answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: When will Gibbs free energy always be negative?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

In what way will the gibbs free energy always be negative?

The Gibbs free energy will always be negative for a spontaneous reaction at constant temperature and pressure. This suggests that the reaction is thermodynamically favorable and can proceed without the input of external energy.


According to the Gibbs free energy equation G H - TS when is a reaction always spontaneous?

when H is negative and S is positive


What will Gibbs free energy always be positive?

Since the question seems to be about reactions - and the whole idea of a reaction is that something is changing... The CHANGE in Gibbs free energy will always be positive for a spontaneous reaction. As far as whether the Gibbs free energy of a system (without the term "change" attached) ... Since Gibbs free energy is a state function, it is always defined relative to a standard state. Asking if the Gibbs free energy is positive is akin to asking how "high" something is - the answer depends on where you define zero to be. If you define 0 height to be the level of the ground you are standing on, you will get a different answer than if you define zero height to be "sea level". A cactus in Death Valley may have a positive height relative to the ground, but would actually have a negative height relative to sea level. Likewise, the Gibbs free energy of a system will be positive or negative (or zero) depending on what you define as the standard state.


What reactions will Gibbs free energy always be positive?

Since the question seems to be about reactions - and the whole idea of a reaction is that something is changing... The CHANGE in Gibbs free energy will always be positive for a spontaneous reaction. As far as whether the Gibbs free energy of a system (without the term "change" attached) ... Since Gibbs free energy is a state function, it is always defined relative to a standard state. Asking if the Gibbs free energy is positive is akin to asking how "high" something is - the answer depends on where you define zero to be. If you define 0 height to be the level of the ground you are standing on, you will get a different answer than if you define zero height to be "sea level". A cactus in Death Valley may have a positive height relative to the ground, but would actually have a negative height relative to sea level. Likewise, the Gibbs free energy of a system will be positive or negative (or zero) depending on what you define as the standard state.


Is the Gibbs free energy negative in the spontaneous reaction?

Yes, as long as the entropy of the universe increases.


What is a negative Gibbs free-energy value an indication of?

A negative Gibbs free-energy value indicates that a reaction is spontaneous, meaning it can proceed without requiring external energy input. It suggests that the products of the reaction are more stable than the reactants at the given conditions.


What does Gibbs free energy depends on?

it depends on the entropy and enathalpy of the reaction


What is the name and symbol of the single thermodynamic quantity which determines whether or not a reaction is spontaneous?

The name of the single thermodynamic quantity is Gibbs free energy (G). The symbol for Gibbs free energy is ΔG (delta G). The sign of ΔG determines whether a reaction is spontaneous (negative ΔG) or non-spontaneous (positive ΔG).


What is true about the numerical value of the Gibbs free-energy change for a spontaneous reaction?

For a spontaneous reaction, the numerical value of the Gibbs free-energy change (ΔG) is negative, indicating that the reaction is energetically favorable and will proceed in the forward direction. This negative ΔG means that the system is releasing energy and increasing in entropy during the reaction.


According to the Gibbs free energy equation what is the temperature range for which the formation of liquid bromine is spontaneous?

The formation of liquid bromine is spontaneous when the Gibbs free energy change for the process is negative, which occurs when ΔG < 0. This means the temperature must be within the range where ΔG is negative, which typically corresponds to temperatures above the boiling point of bromine (~332K) where the entropy term dominates over the enthalpy term in the Gibbs free energy equation.


Why in adsorption GIBBS free energy decreases?

In adsorption, Gibbs free energy decreases because the adsorbate molecules are attracted to the surface of the adsorbent, reducing the overall energy of the system. This leads to a more stable configuration with a lower free energy. The decrease in Gibbs free energy indicates that the adsorption process is spontaneous at a given temperature and pressure.


Use the Gibbs free energy equation shown below to find the Gibbs free energy change for the formation of potassium chloride at 25°C?

-225.3 KJ