answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

When will Gibbs free energy always be negative?

Gibbs free energy (ΔG) will always be negative for a spontaneous process occurring at constant temperature and pressure. This typically occurs when the change in enthalpy (ΔH) is negative (exothermic reactions) and the change in entropy (ΔS) is positive, leading to a favorable increase in disorder. Additionally, even if ΔH is positive, a sufficiently large positive change in entropy can also result in a negative ΔG at high temperatures, according to the equation ΔG = ΔH - TΔS.


How will temperature affect the spontaneity of a reaction with positive triangle H and triangle S?

For a reaction with a positive enthalpy change (ΔH > 0) and a positive entropy change (ΔS > 0), the spontaneity is influenced by temperature through the Gibbs free energy equation: ΔG = ΔH - TΔS. As temperature increases, the TΔS term becomes larger, which can make ΔG more negative, thereby favoring spontaneity. Therefore, at higher temperatures, the reaction is more likely to be spontaneous, while at lower temperatures, it may not be spontaneous.


What is the purpose of th gibbs free energy equation you don't need to know the equation itself?

The purpose is to determine the available energy. Some of the energy in any system is useless - can't be converted into useful work.


What did Alan gibbs invent?

quadski


How do you read Ellingham diagram?

An Ellingham diagram illustrates the temperature dependence of the Gibbs free energy change for various reactions, primarily oxidation and reduction processes. Each line on the diagram represents a specific reaction, with its position indicating the stability of the oxide or compound at different temperatures. The lower a line is on the diagram, the more stable the corresponding oxide is at that temperature. By comparing the positions of different lines, one can determine the feasibility of reducing a metal oxide using another metal or reactant at various temperatures.

Related Questions

What will Gibbs free energy always be positive?

Since the question seems to be about reactions - and the whole idea of a reaction is that something is changing... The CHANGE in Gibbs free energy will always be positive for a spontaneous reaction. As far as whether the Gibbs free energy of a system (without the term "change" attached) ... Since Gibbs free energy is a state function, it is always defined relative to a standard state. Asking if the Gibbs free energy is positive is akin to asking how "high" something is - the answer depends on where you define zero to be. If you define 0 height to be the level of the ground you are standing on, you will get a different answer than if you define zero height to be "sea level". A cactus in Death Valley may have a positive height relative to the ground, but would actually have a negative height relative to sea level. Likewise, the Gibbs free energy of a system will be positive or negative (or zero) depending on what you define as the standard state.


In what way will the gibbs free energy always be negative?

The Gibbs free energy will always be negative for a spontaneous reaction at constant temperature and pressure. This suggests that the reaction is thermodynamically favorable and can proceed without the input of external energy.


When will Gibbs free energy always be negative?

Gibbs free energy (ΔG) will always be negative for a spontaneous process occurring at constant temperature and pressure. This typically occurs when the change in enthalpy (ΔH) is negative (exothermic reactions) and the change in entropy (ΔS) is positive, leading to a favorable increase in disorder. Additionally, even if ΔH is positive, a sufficiently large positive change in entropy can also result in a negative ΔG at high temperatures, according to the equation ΔG = ΔH - TΔS.


What reactions will Gibbs free energy always be positive?

Since the question seems to be about reactions - and the whole idea of a reaction is that something is changing... The CHANGE in Gibbs free energy will always be positive for a spontaneous reaction. As far as whether the Gibbs free energy of a system (without the term "change" attached) ... Since Gibbs free energy is a state function, it is always defined relative to a standard state. Asking if the Gibbs free energy is positive is akin to asking how "high" something is - the answer depends on where you define zero to be. If you define 0 height to be the level of the ground you are standing on, you will get a different answer than if you define zero height to be "sea level". A cactus in Death Valley may have a positive height relative to the ground, but would actually have a negative height relative to sea level. Likewise, the Gibbs free energy of a system will be positive or negative (or zero) depending on what you define as the standard state.


According to the Gibbs free energy equation G H - TS when is a reaction always spontaneous?

when H is negative and S is positive


How does gibbs energy relate to the changes in ethalpy and ethropy?

Gibbs energy accounts for both enthalpy (heat) and entropy (disorder) in a system. A reaction will be spontaneous if the Gibbs energy change is negative, which occurs when enthalpy is negative (exothermic) and/or entropy is positive (increased disorder). The relationship between Gibbs energy, enthalpy, and entropy is described by the equation ΔG = ΔH - TΔS, where T is temperature in Kelvin.


What are the units of Gibbs energy and how are they related to the thermodynamic properties of a system?

The units of Gibbs energy are joules (J) or kilojoules (kJ). Gibbs energy is related to the thermodynamic properties of a system by indicating whether a process is spontaneous or non-spontaneous. If the Gibbs energy is negative, the process is spontaneous, and if it is positive, the process is non-spontaneous.


Under what conditions is G for a reaction always positive?

When H is positive and S is negative


Is cellular respiration a negative or positive delta g?

Photosynthesis is a positive delta G as it produces more free energy than it uses. The overall result of the Gibbs equations shows that delta G is positive


What is the name and symbol of the single thermodynamic quantity which determines whether or not a reaction is spontaneous?

The name of the single thermodynamic quantity is Gibbs free energy (G). The symbol for Gibbs free energy is ΔG (delta G). The sign of ΔG determines whether a reaction is spontaneous (negative ΔG) or non-spontaneous (positive ΔG).


What are the units of Gibbs free energy and how do they relate to the thermodynamic properties of a system?

The units of Gibbs free energy are joules (J) or kilojoules (kJ). Gibbs free energy is a measure of the energy available to do work in a system at constant temperature and pressure. It relates to the thermodynamic properties of a system by indicating whether a reaction is spontaneous (negative G) or non-spontaneous (positive G) under given conditions.


What is the Gibbs energy formula and how is it used to calculate the thermodynamic feasibility of a chemical reaction?

The Gibbs energy formula is G H - TS, where G is the change in Gibbs energy, H is the change in enthalpy, T is the temperature in Kelvin, and S is the change in entropy. This formula is used to determine if a chemical reaction is thermodynamically feasible by comparing the change in Gibbs energy to zero. If G is negative, the reaction is spontaneous and feasible. If G is positive, the reaction is non-spontaneous and not feasible.