answersLogoWhite

0

Gibbs free energy (G) will always be negative for spontaneous processes at constant temperature and pressure, indicating that the reaction can occur without external input. Conversely, Gibbs free energy will be positive for non-spontaneous processes, suggesting that the reaction requires energy input to proceed. When G is zero, the system is at equilibrium, meaning there is no net change in the concentrations of reactants and products.

User Avatar

AnswerBot

1mo ago

What else can I help you with?

Continue Learning about Math & Arithmetic

When will Gibbs free energy always be negative?

Gibbs free energy (ΔG) will always be negative for a spontaneous process occurring at constant temperature and pressure. This typically occurs when the change in enthalpy (ΔH) is negative (exothermic reactions) and the change in entropy (ΔS) is positive, leading to a favorable increase in disorder. Additionally, even if ΔH is positive, a sufficiently large positive change in entropy can also result in a negative ΔG at high temperatures, according to the equation ΔG = ΔH - TΔS.


How will temperature affect the spontaneity of a reaction with positive triangle H and triangle S?

For a reaction with a positive enthalpy change (ΔH > 0) and a positive entropy change (ΔS > 0), the spontaneity is influenced by temperature through the Gibbs free energy equation: ΔG = ΔH - TΔS. As temperature increases, the TΔS term becomes larger, which can make ΔG more negative, thereby favoring spontaneity. Therefore, at higher temperatures, the reaction is more likely to be spontaneous, while at lower temperatures, it may not be spontaneous.


What is the purpose of th gibbs free energy equation you don't need to know the equation itself?

The purpose is to determine the available energy. Some of the energy in any system is useless - can't be converted into useful work.


What is the value of ΔG in a spontaneous reaction less than 0 greater than 0 equal to 0 equal to 1?

In a spontaneous reaction, the value of ΔG (Gibbs free energy change) is less than 0. This indicates that the reaction can occur without the input of external energy, favoring the formation of products. If ΔG is greater than 0, the reaction is non-spontaneous, and if ΔG equals 0, the system is at equilibrium. Thus, for spontaneity, ΔG must be negative.


What did Alan gibbs invent?

quadski

Related Questions

What will Gibbs free energy always be positive?

Since the question seems to be about reactions - and the whole idea of a reaction is that something is changing... The CHANGE in Gibbs free energy will always be positive for a spontaneous reaction. As far as whether the Gibbs free energy of a system (without the term "change" attached) ... Since Gibbs free energy is a state function, it is always defined relative to a standard state. Asking if the Gibbs free energy is positive is akin to asking how "high" something is - the answer depends on where you define zero to be. If you define 0 height to be the level of the ground you are standing on, you will get a different answer than if you define zero height to be "sea level". A cactus in Death Valley may have a positive height relative to the ground, but would actually have a negative height relative to sea level. Likewise, the Gibbs free energy of a system will be positive or negative (or zero) depending on what you define as the standard state.


In what way will the gibbs free energy always be negative?

The Gibbs free energy will always be negative for a spontaneous reaction at constant temperature and pressure. This suggests that the reaction is thermodynamically favorable and can proceed without the input of external energy.


When will Gibbs free energy always be negative?

Gibbs free energy (ΔG) will always be negative for a spontaneous process occurring at constant temperature and pressure. This typically occurs when the change in enthalpy (ΔH) is negative (exothermic reactions) and the change in entropy (ΔS) is positive, leading to a favorable increase in disorder. Additionally, even if ΔH is positive, a sufficiently large positive change in entropy can also result in a negative ΔG at high temperatures, according to the equation ΔG = ΔH - TΔS.


What reactions will Gibbs free energy always be positive?

Since the question seems to be about reactions - and the whole idea of a reaction is that something is changing... The CHANGE in Gibbs free energy will always be positive for a spontaneous reaction. As far as whether the Gibbs free energy of a system (without the term "change" attached) ... Since Gibbs free energy is a state function, it is always defined relative to a standard state. Asking if the Gibbs free energy is positive is akin to asking how "high" something is - the answer depends on where you define zero to be. If you define 0 height to be the level of the ground you are standing on, you will get a different answer than if you define zero height to be "sea level". A cactus in Death Valley may have a positive height relative to the ground, but would actually have a negative height relative to sea level. Likewise, the Gibbs free energy of a system will be positive or negative (or zero) depending on what you define as the standard state.


According to the Gibbs free energy equation G H - TS when is a reaction always spontaneous?

when H is negative and S is positive


How does gibbs energy relate to the changes in ethalpy and ethropy?

Gibbs energy accounts for both enthalpy (heat) and entropy (disorder) in a system. A reaction will be spontaneous if the Gibbs energy change is negative, which occurs when enthalpy is negative (exothermic) and/or entropy is positive (increased disorder). The relationship between Gibbs energy, enthalpy, and entropy is described by the equation ΔG = ΔH - TΔS, where T is temperature in Kelvin.


What are the units of Gibbs energy and how are they related to the thermodynamic properties of a system?

The units of Gibbs energy are joules (J) or kilojoules (kJ). Gibbs energy is related to the thermodynamic properties of a system by indicating whether a process is spontaneous or non-spontaneous. If the Gibbs energy is negative, the process is spontaneous, and if it is positive, the process is non-spontaneous.


When Under what conditions is G for a reaction always positive apex?

The Gibbs free energy change (ΔG) for a reaction is always positive when the reaction is non-spontaneous under the given conditions. This typically occurs at high temperatures for exothermic reactions (where ΔH is negative and ΔS is positive) or when the entropy change (ΔS) is negative while ΔH is positive. In such cases, the term TΔS is not large enough to overcome the positive ΔH, resulting in a positive ΔG.


When is a reaction always spontaneous according to Gibbs free energy equation?

A reaction is always spontaneous when the change in Gibbs free energy (ΔG) is negative (ΔG < 0). This occurs when the system's enthalpy change (ΔH) is negative and the entropy change (ΔS) is positive, or when the temperature is sufficiently low to make the term TΔS (where T is temperature) less significant compared to ΔH. In summary, spontaneous reactions can be identified by a negative ΔG value, indicating that they can occur without external input.


According to gibb's free energy equation GH-TS When is a reaction always spontaneous?

A reaction is always spontaneous when the change in Gibbs free energy (ΔG) is negative. This occurs when the enthalpy change (ΔH) is negative (exothermic reaction) and the entropy change (ΔS) is positive, particularly at all temperatures. Even if ΔH is positive, if ΔS is sufficiently large and positive, the reaction can still be spontaneous at high temperatures, as the term TΔS will outweigh ΔH.


Under what conditions is G for a reaction always positive?

When H is positive and S is negative


Is cellular respiration a negative or positive delta g?

Photosynthesis is a positive delta G as it produces more free energy than it uses. The overall result of the Gibbs equations shows that delta G is positive