answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: Where did the expression watch your PS and qs come from?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Why is the difference between two rational numbers always a rational number?

Suppose x and y are two rational numbers. Therefore x = p/q and y = r/s where p, q, r and s are integers and q and s are not zero.Then x - y = p/q - r/s = ps/qs - qr/qs = (ps - qr)/qsBy the closure of the set of integers under multiplication, ps, qr and qs are all integers,by the closure of the set of integers under subtraction, (ps - qr) is an integer,and by the multiplicative properties of 0, qs is non zero.Therefore (ps - qr)/qs satisfies the requirements of a rational number.


Why is the sum or product of two rational numbers rational?

Suppose p/q and r/s are rational numbers where p, q, r and s are integers and q, s are non-zero.Then p/q + r/s = ps/qs + qr/qs = (ps + qr)/qs.Since p, q, r, s are integers, then ps and qr are integers, and therefore (ps + qr) is an integer.q and s are non-zero integers and so qs is a non-zero integer.Consequently, (ps + qr)/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.Also p/q * r/s = pr/qs.Since p, q, r, s are integers, then pr and qs are integers.q and s are non-zero integers so qs is a non-zero integer.Consequently, pr/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.


Why is the multiplication of rational numbers always result in a rational number?

It follows from the closure of integers under addition and multiplication.Any rational number can be expressed as a ratio of two integers, where the second is not zero. So two rational numbers may be expressed as p/q and r/s.A common multiple of their denominators is qs. So the numbers could also have been expressed as ps/qs and qr/qs.Both these have the same denominator so their sum is (ps + qr)/qs.Now, because the set of integers is closed under multiplication, ps, qr and qs are integers and because the set of integers is closed under addition, ps + qr is an integer.Thus the sum has been expressed as a ratio of two integers, ps + qr, and qs and so it is a rational number.


Is the dfference of two positive rational number always positive plz help explain.?

Yes.Suppose a and b are two positive rational numbers. Then a can be expressed in the form p/q where p and q are positive integers, and b can be expressed in the form r/s where r and s are positive integers.Then b - a = r/s - p/q = (qr - ps)/qs.Now, since p, q, r and s are integers, thenby the closure of the set of integers under multiplications, qr, ps and qs are integers;q and s are positive => qs is positive, andby the closure of the set of integers under addition (and subtraction), qr - ps is an integer.That is, b - a = (qr - ps)/qs is a ratio of two integers, where the denominator of the ratio is positive.


What does qs stand for?

quality seconds