The saying was to remind people to watch which way you write it. In other words, pay attention to what you're doing. It is currently synonymous with "Be polite and mind what you say."
It comes from 19th-century school-teachers reminding children who are learning cursive not to mix up which way the loops on lower-case p and q are facing, and later was used to mean be mindful of all things. There is a long-running joke that it meant "mind you pints and quarts" in 17th-century English pubs. This story has no historical basis and seems to have been concocted in the last couple of decades as a joke that (due to a widely circulating chain e-mail) has begun to be accepted as true.
Chat with our AI personalities
Suppose x and y are two rational numbers. Therefore x = p/q and y = r/s where p, q, r and s are integers and q and s are not zero.Then x - y = p/q - r/s = ps/qs - qr/qs = (ps - qr)/qsBy the closure of the set of integers under multiplication, ps, qr and qs are all integers,by the closure of the set of integers under subtraction, (ps - qr) is an integer,and by the multiplicative properties of 0, qs is non zero.Therefore (ps - qr)/qs satisfies the requirements of a rational number.
Suppose p/q and r/s are rational numbers where p, q, r and s are integers and q, s are non-zero.Then p/q + r/s = ps/qs + qr/qs = (ps + qr)/qs.Since p, q, r, s are integers, then ps and qr are integers, and therefore (ps + qr) is an integer.q and s are non-zero integers and so qs is a non-zero integer.Consequently, (ps + qr)/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.Also p/q * r/s = pr/qs.Since p, q, r, s are integers, then pr and qs are integers.q and s are non-zero integers so qs is a non-zero integer.Consequently, pr/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.
It follows from the closure of integers under addition and multiplication.Any rational number can be expressed as a ratio of two integers, where the second is not zero. So two rational numbers may be expressed as p/q and r/s.A common multiple of their denominators is qs. So the numbers could also have been expressed as ps/qs and qr/qs.Both these have the same denominator so their sum is (ps + qr)/qs.Now, because the set of integers is closed under multiplication, ps, qr and qs are integers and because the set of integers is closed under addition, ps + qr is an integer.Thus the sum has been expressed as a ratio of two integers, ps + qr, and qs and so it is a rational number.
Yes.Suppose a and b are two positive rational numbers. Then a can be expressed in the form p/q where p and q are positive integers, and b can be expressed in the form r/s where r and s are positive integers.Then b - a = r/s - p/q = (qr - ps)/qs.Now, since p, q, r and s are integers, thenby the closure of the set of integers under multiplications, qr, ps and qs are integers;q and s are positive => qs is positive, andby the closure of the set of integers under addition (and subtraction), qr - ps is an integer.That is, b - a = (qr - ps)/qs is a ratio of two integers, where the denominator of the ratio is positive.
quality seconds