answersLogoWhite

0

It can be used as a convenient shortcut to calculate the absolute value of the square of a complex number. Just multiply the number by its complex conjugate.I believe it has other uses as well.

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
More answers

Complex conjugates are important for finding roots of polynomials.

User Avatar

Wiki User

9y ago
User Avatar

Converting the complex denominator of a faction into a real number.

User Avatar

Wiki User

8y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Which arithmetic operation requires the use of complex conjugate?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Which operation involves complex numbers requires the use of a conjugate to be carried out?

One operation that is used a lot in quantum mechanics is taking the absolute value of the square of a complex number. This is equivalent to multiplying the complex number by its complex conjugate - and doing this is simpler in practice.


What is conjugate function?

If you have a complex function in the form "a+ib", the (complex) conjugate is "a-ib". "Conjugate" is usually a function that the original function must be multiplied by to achieve a real number.


What is the meaning of Complex conjugate reflection?

For a complex number (a + bi), its conjugate is (a - bi). If the number is graphically plotted on the Complex Plane as [a,b], where the Real number is the horizontal component and Imaginary is vertical component, the Complex Conjugate is the point which is reflected across the real (horizontal) axis.


Is the sum of two conjugate complex number a real number?

Not necessarily. It can be wholly imaginary.For example, 1 + i actually has two complex conjugates. Most schools will teach you that the complex conjugate is 1 - i. However, -1 + i is also a conjugate for 1 + i. (Their product is -1 times the product of the "normal" conjugate pair).The sum of 1 + i and -1 + i = 2i


What is the usefulness of the conjugate and its effect on other complex numbers?

The conjugate of a complex number is the same number (but the imaginary part has opposite sign). e.g.: A=[5i - 2] --> A*=[-5i - 2] Graphically, as you change the sign, you also change the direction of that vector. The conjugate it's used to solve operations with complex numbers. When a complex number is multiplied by its conjugate, the product is a real number. e.g.: 5/(2-i) --> then you multiply and divide by the complex conjugate (2+i) and get the following: 5(2+i)/(2-i)(2+i)=(10+5i)/5=2+i