It can be used as a convenient shortcut to calculate the absolute value of the square of a complex number. Just multiply the number by its complex conjugate.I believe it has other uses as well.
Chat with our AI personalities
One operation that is used a lot in quantum mechanics is taking the absolute value of the square of a complex number. This is equivalent to multiplying the complex number by its complex conjugate - and doing this is simpler in practice.
If you have a complex function in the form "a+ib", the (complex) conjugate is "a-ib". "Conjugate" is usually a function that the original function must be multiplied by to achieve a real number.
For a complex number (a + bi), its conjugate is (a - bi). If the number is graphically plotted on the Complex Plane as [a,b], where the Real number is the horizontal component and Imaginary is vertical component, the Complex Conjugate is the point which is reflected across the real (horizontal) axis.
Not necessarily. It can be wholly imaginary.For example, 1 + i actually has two complex conjugates. Most schools will teach you that the complex conjugate is 1 - i. However, -1 + i is also a conjugate for 1 + i. (Their product is -1 times the product of the "normal" conjugate pair).The sum of 1 + i and -1 + i = 2i
The conjugate of a complex number is the same number (but the imaginary part has opposite sign). e.g.: A=[5i - 2] --> A*=[-5i - 2] Graphically, as you change the sign, you also change the direction of that vector. The conjugate it's used to solve operations with complex numbers. When a complex number is multiplied by its conjugate, the product is a real number. e.g.: 5/(2-i) --> then you multiply and divide by the complex conjugate (2+i) and get the following: 5(2+i)/(2-i)(2+i)=(10+5i)/5=2+i