Linear inequalities in two variables involve expressions that use inequality symbols (such as <, >, ≤, or ≥), while linear equations in two variables use an equality sign (=). The solution to a linear equation represents a specific line on a graph, while the solution to a linear inequality represents a region of the graph, typically shaded to show all the points satisfying the inequality. Moreover, linear inequalities allow for a range of values, whereas linear equations specify exact values for the variables.
The solution of a system of linear equations consists of specific points where the equations intersect, typically yielding a unique point, infinitely many points, or no solution at all. In contrast, the solution of a system of linear inequalities represents a region in space, encompassing all points that satisfy the inequalities, often forming a polygonal shape in two dimensions. While equations define boundaries, inequalities define areas that can include multiple solutions. Thus, the nature of their solutions differs fundamentally: precise points versus expansive regions.
When there is an ordered pair that satisfies both inequalities.
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
A system of two linear inequalities can have no solution when the inequalities represent parallel lines that do not intersect. This occurs when the lines have the same slope but different y-intercepts. In such cases, there is no set of values that can satisfy both inequalities simultaneously, resulting in an empty solution set.
It represents the solution set.
Linear inequalities in two variables involve expressions that use inequality symbols (such as <, >, ≤, or ≥), while linear equations in two variables use an equality sign (=). The solution to a linear equation represents a specific line on a graph, while the solution to a linear inequality represents a region of the graph, typically shaded to show all the points satisfying the inequality. Moreover, linear inequalities allow for a range of values, whereas linear equations specify exact values for the variables.
The solution of a system of linear equations consists of specific points where the equations intersect, typically yielding a unique point, infinitely many points, or no solution at all. In contrast, the solution of a system of linear inequalities represents a region in space, encompassing all points that satisfy the inequalities, often forming a polygonal shape in two dimensions. While equations define boundaries, inequalities define areas that can include multiple solutions. Thus, the nature of their solutions differs fundamentally: precise points versus expansive regions.
When there is an ordered pair that satisfies both inequalities.
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
yes
yes it is possible for a system of two linear inequalities to have a single point as a solution.
A system of two linear inequalities can have no solution when the inequalities represent parallel lines that do not intersect. This occurs when the lines have the same slope but different y-intercepts. In such cases, there is no set of values that can satisfy both inequalities simultaneously, resulting in an empty solution set.
A linear equation represents a line. A linear inequality represents part of the space on one side (or the other) of the line defined by the corresponding equation.
There is only one solution set. Depending on the inequalities, the set can be empty, have a finite number of solutions, or have an infinite number of solutions. In all cases, there is only one solution set.
No. For example, the solution to x ≤ 4 and x ≥ 4 is x = 4.
When the lines never intersect, usually when they are parallel.