answersLogoWhite

0


Best Answer

It represents the solution set.

User Avatar

Wiki User

βˆ™ 2013-05-14 22:28:33
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

➑️
See all cards
3.79
β˜†β˜…β˜†β˜…β˜†β˜…β˜†β˜…β˜†β˜…
1449 Reviews

Add your answer:

Earn +20 pts
Q: When solving a system of linear inequalities what does the region that is never shaded represent?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is the feasible region in linear programming?

Linear programming is just graphing a bunch of linear inequalities. Remember that when you graph inequalities, you need to shade the "good" region - pick a point that is not on the line, put it in the inequality, and the it the point makes the inequality true (like 0


How are linear equations and linear inequalities similar?

A linear equation corresponds to a line, and a linear inequality corresponds to a region bounded by a line. Consider the equation y = x-5. This could be graphed as a line going through (0,-5), (1,-4), (2,-3), and so on. The inequality y > x-5 would be the region above that line.


How do you know which region of a system of inequalities is the solution?

Each inequality divides the Cartesian plane into two parts. On one side of the line the inequality is satisfied while on the other it is not. A system of inequalities divides the plane into a number of such parts and the intersection of these parts in which the inequalities are true defines the the required region.


What do we called the ordered pairs that satisfies each inequalities?

Your question asks about "each inequalities" which is grammatically impossible since "each" implies singular whereas inequalities implies plural. Consequently it is not clear whether you mean "each inequality" or "each of a set of inequalities". In either case the set is called the feasible region, or the 2-dimensional solution set.


What does it mean to find the solutions of system of inequalities?

In 2-dimensional space, an equality could be represented by a line. A set of equalities would be represented by a set of lines. If these lines intersected at a single point, that point would be the solution to the set of equations. With inequalities, instead of a line you get a region - one side of the line representing the corresponding equality (or the other). The line, itself, may be included or excluded. Each inequality can be represented by a region and, if these regions overlap, any point within that sub-region is a solution to the system of inequalities.

Related questions

What is the feasible region in linear programming?

Linear programming is just graphing a bunch of linear inequalities. Remember that when you graph inequalities, you need to shade the "good" region - pick a point that is not on the line, put it in the inequality, and the it the point makes the inequality true (like 0


What is the definition of the solution of linear inequalities?

Each linear equation is a line that divides the coordinate plane into three regions: one "above" the line, one "below" and the line itself. For a linear inequality, the corresponding equality divides the plane into two, with the line itself belonging to one or the other region depending on the nature of the inequality. A system of linear inequalities may define a polygonal region (a simplex) that satisfies ALL the inequalities. This area, if it exists, is called the feasible region and comprises all possible solutions of the linear inequalities. In linear programming, there will be an objective function which will restrict the feasible region to a vertex or an edge of simplex. There may also be a further constraint - integer programming - where the solution must comprise integers. In this case, the feasible region will comprise all the integer grid-ponits with the simplex.


What are the solutions to system of inequalities?

Systems of inequalities in n variables with create an n-dimensional shape in n-dimensional space which is called the feasible region. Any point inside this region will be a solution to the system of inequalities; any point outside it will not. If all the inequalities are linear then the shape will be a convex polyhedron in n-space. If any are non-linear inequalities then the solution-space will be a complicated shape. As with a system of equations, with continuous variables, there need not be any solution but there can be one or infinitely many.


How many solution sets do systems of linear inequalities have Must solutions to systems of linear inequalities satisfy both inequalities In what case might they not?

A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.


How are linear equations and linear inequalities similar?

A linear equation corresponds to a line, and a linear inequality corresponds to a region bounded by a line. Consider the equation y = x-5. This could be graphed as a line going through (0,-5), (1,-4), (2,-3), and so on. The inequality y > x-5 would be the region above that line.


Is transistor linear or non linear?

linear in active region....


What are examples of feasible region?

the feasible region is where two or more inequalities are shaded in the same place


How do you know which region of the graph of a system of linear inequalities contains the solutions?

If the lines intersect, then the intersection point is the solution of the system. If the lines coincide, then there are infinite number of the solutions for the system. If the lines are parallel, there is no solution for the system.


In a system of nonlinear inequalities the solution set is the region where shaded regions?

overlap


In a system of nonlinear inequalities he solution set is the region where shaded regions?

true


How do you know which region of a system of inequalities is the solution?

Each inequality divides the Cartesian plane into two parts. On one side of the line the inequality is satisfied while on the other it is not. A system of inequalities divides the plane into a number of such parts and the intersection of these parts in which the inequalities are true defines the the required region.


What do we called the ordered pairs that satisfies each inequalities?

Your question asks about "each inequalities" which is grammatically impossible since "each" implies singular whereas inequalities implies plural. Consequently it is not clear whether you mean "each inequality" or "each of a set of inequalities". In either case the set is called the feasible region, or the 2-dimensional solution set.

People also asked