It represents the solution set.
Chat with our AI personalities
Linear programming is just graphing a bunch of linear inequalities. Remember that when you graph inequalities, you need to shade the "good" region - pick a point that is not on the line, put it in the inequality, and the it the point makes the inequality true (like 0
A linear equation corresponds to a line, and a linear inequality corresponds to a region bounded by a line. Consider the equation y = x-5. This could be graphed as a line going through (0,-5), (1,-4), (2,-3), and so on. The inequality y > x-5 would be the region above that line.
Each inequality divides the Cartesian plane into two parts. On one side of the line the inequality is satisfied while on the other it is not. A system of inequalities divides the plane into a number of such parts and the intersection of these parts in which the inequalities are true defines the the required region.
In linear programming, infeasibility refers to a situation where no feasible solution exists for a given set of constraints and objective function. This can occur when the constraints are contradictory or when the feasible region is empty. Infeasibility can be detected by solving the linear programming problem and finding that no solution satisfies all the constraints simultaneously. In such cases, the linear programming problem is said to be infeasible.
Your question asks about "each inequalities" which is grammatically impossible since "each" implies singular whereas inequalities implies plural. Consequently it is not clear whether you mean "each inequality" or "each of a set of inequalities". In either case the set is called the feasible region, or the 2-dimensional solution set.