answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
JudyJudy
Simplicity is my specialty.
Chat with Judy
BeauBeau
You're doing better than you think!
Chat with Beau

Add your answer:

Earn +20 pts
Q: What identifies all the integer solutions of the equation x 12?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What lists all the integer solutions of the equation x equals 10?

The person or program that solves the equation does.


How are the graph of an equation and the set of all solutions of an equation related?

The coordinates of every point on the graph, and no other points, are solutions of the equation.


How do you when an equation has infinitely many solutions?

You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.


What are all the solutions to sine theta - 1 in terms of pie?

The solutions are (4n - 1)*pi/2 for all integer values of n.


How can you determine whether a polynomial equation has imaginary solutions?

To determine whether a polynomial equation has imaginary solutions, you must first identify what type of equation it is. If it is a quadratic equation, you can use the quadratic formula to solve for the solutions. If the equation is a cubic or higher order polynomial, you can use the Rational Root Theorem to determine if there are any imaginary solutions. The Rational Root Theorem states that if a polynomial equation has rational solutions, they must be a factor of the constant term divided by a factor of the leading coefficient. If there are no rational solutions, then the equation has imaginary solutions. To use the Rational Root Theorem, first list out all the possible rational solutions. Then, plug each possible rational solution into the equation and see if it is a solution. If there are any solutions, then the equation has imaginary solutions. If not, then there are no imaginary solutions.