It seems like there is a typo or missing information in your question regarding the equation "x 12." If you meant to ask about the equation (x = 12), then the only integer solution is (x = 12). If you meant a different equation, please clarify so I can provide the correct answer.
The equation ( x = 14 ) identifies a single integer solution, which is ( x = 14 ) itself. Since the equation specifies that ( x ) is equal to 14, there are no other integer solutions. Therefore, the only integer solution is ( {14} ).
The person or program that solves the equation does.
The coordinates of every point on the graph, and no other points, are solutions of the equation.
You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.
The set of all solutions to an equation is called the "solution set." It includes all values that satisfy the equation when substituted into it. Depending on the equation, the solution set can be finite, infinite, or empty.
The equation ( x = 14 ) identifies a single integer solution, which is ( x = 14 ) itself. Since the equation specifies that ( x ) is equal to 14, there are no other integer solutions. Therefore, the only integer solution is ( {14} ).
The person or program that solves the equation does.
The coordinates of every point on the graph, and no other points, are solutions of the equation.
You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.You may be able to give a formula that represents all the solutions. For example, the equation sin(x) = 0 where x is real, has infinitely many solutions but they can be summarised, very simply, as x = n*pi radians (180*n degrees) where n is any integer. Some solution sets are harder to summarise.
This equation describes all the points on the unit sphere. There is an infinite number of solutions. Some quick integer solutions would be (1,0,0) and (0,1,0) and (0,0,1) which are the one the axes.
The set of all solutions to an equation is called the "solution set." It includes all values that satisfy the equation when substituted into it. Depending on the equation, the solution set can be finite, infinite, or empty.
Yes, it is an integer sequence.
The solutions are (4n - 1)*pi/2 for all integer values of n.
If it is a straight line, then the equation is linear.
To determine whether a polynomial equation has imaginary solutions, you must first identify what type of equation it is. If it is a quadratic equation, you can use the quadratic formula to solve for the solutions. If the equation is a cubic or higher order polynomial, you can use the Rational Root Theorem to determine if there are any imaginary solutions. The Rational Root Theorem states that if a polynomial equation has rational solutions, they must be a factor of the constant term divided by a factor of the leading coefficient. If there are no rational solutions, then the equation has imaginary solutions. To use the Rational Root Theorem, first list out all the possible rational solutions. Then, plug each possible rational solution into the equation and see if it is a solution. If there are any solutions, then the equation has imaginary solutions. If not, then there are no imaginary solutions.
hi
It represents all solutions to the linear equation.