answersLogoWhite

0

To determine which points are solutions to a system of inequalities, you need to assess whether each point satisfies all the inequalities in the system. This involves substituting the coordinates of each point into the inequalities and checking if the results hold true. A point is considered a solution if it makes all the inequalities true simultaneously. Graphically, solutions can be found in the region where the shaded areas of the inequalities overlap.

User Avatar

AnswerBot

1mo ago

What else can I help you with?

Continue Learning about Math & Arithmetic

How would you know if the solutions you found from the graphs of linear inequalities in a system are true?

To verify the solutions of a system of linear inequalities from a graph, check if the points satisfy all the inequalities in the system. You can do this by substituting the coordinates of each point into the original inequalities to see if they hold true. Additionally, ensure that the points lie within the shaded region of the graph, which represents the solution set. If both conditions are met, the solutions are confirmed to be true.


What points are solutions to the system of inequalities shown below y6x 7 y6x 9?

To determine the points that are solutions to the system of inequalities (y \leq 6x + 7) and (y \geq 6x + 9), we need to analyze the area between the two lines represented by these inequalities. The first inequality represents a region below the line (y = 6x + 7), while the second represents the region above the line (y = 6x + 9). Since the two lines are parallel, there are no points that satisfy both inequalities simultaneously; thus, there are no solutions to the system.


What is the difference between the solution of a system of linear inequalities and the solution of a system of linear equations?

The solution of a system of linear equations consists of specific points where the equations intersect, typically yielding a unique point, infinitely many points, or no solution at all. In contrast, the solution of a system of linear inequalities represents a region in space, encompassing all points that satisfy the inequalities, often forming a polygonal shape in two dimensions. While equations define boundaries, inequalities define areas that can include multiple solutions. Thus, the nature of their solutions differs fundamentally: precise points versus expansive regions.


What is the set of two or more inequalities?

A set of two or more inequalities is known as a system of inequalities. This system consists of multiple inequalities that involve the same variables and can be solved simultaneously to find a range of values that satisfy all conditions. Solutions to a system of inequalities are often represented graphically, where the feasible region indicates all possible solutions that meet all the inequalities. Such systems are commonly used in linear programming and optimization problems.


When we graph a system of two linear inequalities any point in the doubly shaded region has coordinates that contain both inequalities?

In a graph of a system of two linear inequalities, the doubly shaded region represents the set of all points that satisfy both inequalities simultaneously. Any point within this region will meet the criteria set by both linear inequalities, meaning its coordinates will fulfill the conditions of each inequality. Consequently, this region illustrates all possible solutions that satisfy the system, while points outside this region do not satisfy at least one of the inequalities.

Related Questions

Which points are solutions to the system of inequalities y is less than 2x y is less than 8 x is greater than 2?

The system of inequalities y


Can the solution of a system of linear inequalities be the points on a line?

yes


How do you know if a system has one solution?

If the equations or inequalities have the same slope, they have no solution or infinite solutions. If the equations/inequalities have different slopes, the system has only one solution.


A system of two linear inequalities has either no points or infinitely many points in its solution?

the answer is true


What is the definition of equivalent inequalities?

The definition of equivalent inequalities: inequalities that have the same set of solutions


Check all of the points that are solutions to the system of inequalities y 4x plus 3 y -4x plus 6?

the solution for the inequality 4x + 2 - 6x < -1 was x < 3/2


How is the solution in a system of inequalities determine?

An inequality determines a region of space in which the solutions for that particular inequality. For a system of inequalities, these regions may overlap. The solution set is any point in the overlap. If the regions do not overlap then there is no solution to the system.


How do you know which region of the graph of a system of linear inequalities contains the solutions?

If the lines intersect, then the intersection point is the solution of the system. If the lines coincide, then there are infinite number of the solutions for the system. If the lines are parallel, there is no solution for the system.


How do you solve questions that say which graph best represents the system of inequalities?

The solution to a system of inequalities is where the solutions to each of the individual inequalities intersect. When given a set of graphs look for the one which most closely represents the intersection, this one will contain the most of the solution to the the system but the least extra.


Do solutions to systems of linear inequalities satisfy both inequalities?

Yes.


Which of the following points are solutions to the system of inequalities shown below?

y > 5x - 2 y < 5x + 3 A.(4, 20) B.(-5, 25) C.(5, 28) D.(4, 23)


Must solutions to systems of linear inequalities satisfy both inequalities?

Yes.