answersLogoWhite

0

Any set that contains it! It belongs to {0}, or {45, sqrt(2), 0, pi, -3/7}, or all whole numbers between -43 and 53,
or multiples of 5, or integers,
or rational numbers, or rational numbers smaller than 6.3,or real numbers,

or complex numbers, etc.

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

What subsets of the real number system contain 23.8?

The set of rational numbers. 23.8 can be expressed as the fraction 119/5


What are the sets of numbers that are part of the complex number system?

Real number set, imaginary number set, and their subsets.


How are the subsets of the real number system related to each other?

They are all subsets of the real number. That is their only common feature. There is little direct relationship between the set of counting numbers and the set S = {pi, sqrt(9.3), 6, -7.5}


What are the subset real numbers to -2.38?

Only a set can have subsets, a number such as -2.38 cannot have subsets.


What is the subsets or the real number to negative 8?

negative 8


What subsets groups does -2.324 belong to?

The number -2.324 belongs to several subsets of the real number system. It is classified as a rational number because it can be expressed as a fraction (-2324/1000). Additionally, it is a real number, and it falls under the category of irrational numbers, as it has a non-repeating, non-terminating decimal expansion. However, it is not an integer or a whole number.


Is a set of rational number a sub set of irrational number?

No, they are disjoint sets. Both are subsets of the Real numbers.


Which are the subsets of real rational numbers?

All rational numbers are real so the phrase "real rational" has no meaning. There are an infinite number of subsets: The emply or null set, {1,1.5, 7/3}, {2}, (0.1,0.2,0.3,0.66..., 5.142857142857...} are some examples.


Which subsets does the number -22 belong?

Integers, Rational numbers, Real numbers and Complex numbers.


To which subsets of the real numbers does the number 1.68 belong?

The number 1.68 belongs to the subsets of real numbers known as rational numbers and decimal numbers. As a rational number, 1.68 can be expressed as the ratio of two integers (84/50). It is also a decimal number, specifically a terminating decimal, where the digits after the decimal point eventually end.


What are the subsets for real numbers?

There are infinitely many subsets of real numbers. For example, {2, sqrt(27), -9.37} is one subset.


What subsets does negative four over five belong to?

Negative four over five (-4/5) belongs to several subsets of numbers. It is a rational number because it can be expressed as a fraction of two integers. Additionally, it is a real number, as all rational numbers are part of the real number set. However, it is not a whole number, integer, or natural number.