answersLogoWhite

0

Suppose an irrational number can be written precisely in decimal form, with n digits after the decimal point. Then if you multiply the decimal value by 10n you will get an integer, say k. Then the decimal representation is equivalent to k/10n, which is a ratio of two integers and so the number, by definition, is rational - not irrational.

User Avatar

Wiki User

7y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: Why can't irrational numbers ever be precisely represented in a decimal form?
Write your answer...
Submit
Still have questions?
magnify glass
imp