answersLogoWhite

0

Suppose an irrational number can be written precisely in decimal form, with n digits after the decimal point. Then if you multiply the decimal value by 10n you will get an integer, say k. Then the decimal representation is equivalent to k/10n, which is a ratio of two integers and so the number, by definition, is rational - not irrational.

User Avatar

Wiki User

7y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: Why can't irrational numbers ever be precisely represented in a decimal form?
Write your answer...
Submit
Still have questions?
magnify glass
imp