Because infinity is not a number.
Chat with our AI personalities
Open interval does not include its end points while closed interval includes
Yes, if it is the closed interval. No, if it is the open interval.
Probability of an even must lie in the closed interval [0, 1].Probability of an even must lie in the closed interval [0, 1].Probability of an even must lie in the closed interval [0, 1].Probability of an even must lie in the closed interval [0, 1].
Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. The equation: x - 3 = 7 has one solution, that is x = 10. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of value of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. The half-closed interval [3, +infinity) ; the end point 3 is included.
Assuming its endpoints are not equal, a closed interval of the real number line a has an infinite number of real numbers in it. Closed intervals of other ordered sets can have either a finite or an infinite number of elements. I am not sure I answered your question because I am not exactly sure what you are asking. Could you be more specific? Are you talking about a closed interval of the real number line or closed interval of some other ordered set? By finite do you mean 'containing a finite number of elements' or do you mean 'bounded by a finite number'.