NO!!!! On a graph a quadratic equation becomes a parabolic curve. If this curve intersects the x-axis in two places. then there are two different answers. If the curve just touches the x-axix on one place then there are two answers which both have the same valuer. If the curve does NOT touch the x-axis the there are NO solutions.
The solutions to a quadratic equation on a graph are the two points that cross the x-axis. NB A graphed quadratic equ'n produces a parabolic curve. If the curve crosses the x-axis in two different points it has two solution. If the quadratic curve just touches the x-axis , there is only ONE solution. It the quadratic curve does NOT touch the x-axis , then there are NO solutions. NNB In a quadratic equation, if the 'x^(2)' value is positive, then it produces a 'bowl' shaped curve. Conversely, if the 'x^(2)' value is negative, then it produces a 'umbrella' shaped curve.
Your question seems very confused. The normal convention of the Cartesian coordinate system would place negative numbers below the x axis, so that any curve approaching negative infinity would curve downward, not upward.
Integrate the function for the curve, as normal, but the change the sign of the result. Be very careful that the curve is always on the same side of the x-axis between the limits of integration. If necessary, partition the integral. For example, to find the area between the x-axis and sin(x) between x=0 and x=3*pi, you will need Integral of sin(x) between 0 and pi, -[integral of sin(x) between pi and 2*pi] - this is where the curve is below the x-axis. +integral of sin(x) between 2*pi and 3*pi.
Take the definite integral (and your bounds should be the two places where the curve crosses the x-axis).
The domain of the Normal distribution is the whole of the real line. As a result the horizontal axis is asymptotic to the Normal distribution curve. The curve gets closer and closer to the axis but never, ever reaches it.
No
yes, an asymptote is a curve that gets closer but never touches the x axis.
NO!!!! On a graph a quadratic equation becomes a parabolic curve. If this curve intersects the x-axis in two places. then there are two different answers. If the curve just touches the x-axix on one place then there are two answers which both have the same valuer. If the curve does NOT touch the x-axis the there are NO solutions.
because it is imposible
The solutions to a quadratic equation on a graph are the two points that cross the x-axis. NB A graphed quadratic equ'n produces a parabolic curve. If the curve crosses the x-axis in two different points it has two solution. If the quadratic curve just touches the x-axis , there is only ONE solution. It the quadratic curve does NOT touch the x-axis , then there are NO solutions. NNB In a quadratic equation, if the 'x^(2)' value is positive, then it produces a 'bowl' shaped curve. Conversely, if the 'x^(2)' value is negative, then it produces a 'umbrella' shaped curve.
The difference is the Y- axis. In the case of the Demand curve the Y - axis is the retail price of the good. On the Engel's curve the Y -axis is the amount of income over a set period of time.
The x-axis of a solubility curve typically displays temperature in degrees Celsius.
Your question seems very confused. The normal convention of the Cartesian coordinate system would place negative numbers below the x axis, so that any curve approaching negative infinity would curve downward, not upward.
Integrate the function for the curve, as normal, but the change the sign of the result. Be very careful that the curve is always on the same side of the x-axis between the limits of integration. If necessary, partition the integral. For example, to find the area between the x-axis and sin(x) between x=0 and x=3*pi, you will need Integral of sin(x) between 0 and pi, -[integral of sin(x) between pi and 2*pi] - this is where the curve is below the x-axis. +integral of sin(x) between 2*pi and 3*pi.
Take the definite integral (and your bounds should be the two places where the curve crosses the x-axis).
This is because the normal distribution has a domain that extends to infinity in both directions.