R was used for Real numbers. Q, for rational numbers refers to the fact that it must be possible to express them as quotients [of two integers].
Chat with our AI personalities
The set of rational numbers is represented by Q.
In number systems Rational number is not represented just by q . they are represented in the form of p and q . P/q is rational number where q is not equal to zero.
There is no special symbol.The set of rational numbers is denoted by Q and the set of real numbers by R so one option is R - Q.
No: Let r be some irrational number; as such it cannot be represented as s/t where s and t are both non-zero integers. Assume the square root of this irrational number r was rational. Then it can be represented in the form of p/q where p and q are both non-zero integers, ie √r = p/q As p is an integer, p² = p×p is also an integer, let y = p² And as q is an integer, q² = q×q is also an integer, let x = q² The number is the square of its square root, thus: (√r)² = (p/q)² = p²/q² = y/x but (√r)² = r, thus r = y/x and is a rational number. But r was chosen to be an irrational number, which is a contradiction (r cannot be both rational and irrational at the same time, so it cannot exist). Thus the square root of an irrational number cannot be rational. However, the square root of a rational number can be irrational, eg for the rational number ½ its square root (√½) is not rational.
You need the rules of multiplication as well as of addition. But multiplication of integers can be viewed as repeated addition. Thus, if p/q and r/s are two rational numbers then their sum is(p*s + q*r)/(q*s)