In the quadratic formula, you have -b +- square root of ( b^2 - 4ac) all over 2a. There are three cases:
No values:
If the discriminant is negative, the square root of b^2 -4ac has no values, because we cannot take the square root of a negative number.
One value:
If it is zero, than the square root is also zero. This means that there is one solution because +- 0 is always just 0. (-b+-0)/2a only has one value.
2 values:
if the discriminant is positive then it has a square root. BUT, there is a difference between here and the last step. (-b +- discriminant )/ 2a has 2 values: one for the positive and one for the negative.
* * * * *
Minor amendment:
-b +- square root of ( b^2 - 4ac) all over 2a is the quadratic formula.
The discriminant is simply b2 - 4ac
If b2 - 4ac > 0 then there are two distinct real roots to the quadratic;
If b2 - 4ac = 0 then there is one real roots to the quadratic (or two identical roots);
If b2 - 4ac < 0 then there are no real roots to the quadratic.
The values of the roots are exactly as described in the earlier answer.
The discriminant is -439 and so there are no real solutions.
The discriminant must be a perfect square or a square of a rational number.
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
It has no real roots.
The discriminant must be a positive number which is not a perfect square.
A quadratic equation is wholly defined by its coefficients. The solutions or roots of the quadratic can, therefore, be determined by a function of these coefficients - and this function called the quadratic formula. Within this function, there is one part that specifically determines the number and types of solutions it is therefore called the discriminant: it discriminates between the different types of solutions.
The discriminant is -439 and so there are no real solutions.
The discriminant must be a perfect square or a square of a rational number.
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
There are an indeterminate number of invisible solutions.
6
A quadratic equation has the formAx2 + Bx + C = 0,where A, B, and C are numbers and x is a variable. Since the polynomial here has degree 2 (the highest exponent of x), it either has 0, 1, 2, or infinitely many solutions.The infinitely many solutions only happens when A, B, and C are all equal to zero. Otherwise, we can find the number of solutions by examining the discriminant, which in this case is the quantity B2 - 4AC. If the discriminant is negative, there are no (real) solutions. If the discriminant equals zero, we have what is called a "repeated root" and there is exactly one (real) solution. Otherwise, if the discriminant is positive, there are two distinct (real) solutions.
If you mean 2x^2 -3x +8 = 0 then the discriminant works out as -55 which is less than 0 meaning that the equation has no real roots and so therefore no solutions are possible.
It has no real roots.
It depends on the equation. Also, the domain must be such that is supports an infinite number of solutions. A quadratic equation, for example, has no real solution if its discriminant is negative. It cannot have an infinite number of solutions. Many trigonometric equations are periodic and consequently have an infinite number of solutions - provided the domain is also infinite. A function defined as follows: f(x) = 1 if x is real f(x) = 0 if x is not real has no real solutions but an infinite number of solutions in complex numbers.
The answer depends on what the factors will be. For example, every quadratic can be factored if you allow complex numbers. If not, then it helps to use the discriminant. If it is positive, there are two real factors or solutions. If that positive number is a perfect square, then the factors are rational numbers. If not, they are real but not rational (irrational). If the discriminant is 0, there is one real solution. Lastly, if it is negative, there are no real solutions.
The discriminant must be a positive number which is not a perfect square.