answersLogoWhite

0

It is no more or n less significant than many other sequences.

User Avatar

Wiki User

8y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
RossRoss
Every question is just a happy little opportunity.
Chat with Ross

Add your answer:

Earn +20 pts
Q: Why is the quadratic sequence significant?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Is a geometric progression a quadratic sequence?

A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.


What number comes next in the sequence -1 0 1 8?

You cant solve the next term (next number) in this sequence. You need more terms, because this is either a "quadratic sequence", or a "linear and quadratic sequence", and you need more terms than this to solve a "linear and quadratic sequence" and for this particular "quadratic sequence" you would need more terms to solve nth term, which would solve what the next number is. If this is homework, check with your teacher if he wrote the wrong sum.


What sequence is formed from difference of differences between terms of a sequence?

These are called the second differences. If they are all the same (non-zero) then the original sequence is a quadratic.


How do you justify a quadratic sequence and ensure that it is correct?

It isn't clear what you want to justify.


What is the nth term for the sequence 5 15 29 47 69?

To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).