To find the nth term in a quadratic sequence, we first need to determine the pattern. In this case, the difference between consecutive terms is increasing by 3, 5, 7, 9, and so on. This indicates a quadratic sequence. To find the 9th term, we need to use the formula for the nth term of a quadratic sequence, which is given by: Tn = an^2 + bn + c. By plugging in n=9 and solving for the 9th term, we can find that the 9th term in this quadratic sequence is 74.
10-2x for x = 0, 1, 2, 3, ... Since the domain of an arithmetic sequence is the set of natural numbers, then the formula for the nth term of the given sequence with the first term 10 and the common difference -2 is an = a1 + (n -1)(-2) = 10 - 2n + 2 = 12 - 2n.
The nth term in the arithmetic progression 10, 17, 25, 31, 38... will be equal to 7n + 3.
You can see that all the numbers go up by 7. This means that the first part of the nth term rule for this sequence is 7n. Now, you have to find out how to get from 7 to 3, 14 to 10, 21 to 17 ... this is because we are going up in the 7 times table. To get from the seventh times table to the sequence, you take away four. So the answer is : 7n-4
37
Oh, what a happy little sequence we have here! To find the pattern, we can see that each term is generated by multiplying the previous term by 2 and then adding 2. So, the nth term can be found using the formula 2^n * 2 - 2. Isn't that just a delightful little formula?
To find the next term in the quadratic sequence 6, 18, 40, 72, 114, we first determine the second differences. The first differences are 12, 22, 32, and 42, while the second differences are 10, 10, and 10, indicating it is indeed quadratic. The next first difference would be 52, leading to a new term of 114 + 52 = 166. Therefore, the next term in the sequence is 166.
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
To find the nth term of the sequence 4, 10, 18, 28, 40, we first identify the pattern in the differences between consecutive terms: 6, 8, 10, and 12. The second differences are constant at 2, indicating a quadratic sequence. The nth term can be expressed as ( a_n = n^2 + n + 2 ). Thus, the nth term of the sequence is ( n^2 + n + 2 ).
The sequence provided is an arithmetic sequence where the first term is 3 and the common difference is 2. The formula for the nth term of an arithmetic sequence is given by ( a_n = a_1 + (n-1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. For the 10th term, ( a_{10} = 3 + (10-1) \times 2 = 3 + 18 = 21 ). Thus, the 10th term of the sequence is 21.
To find the nth term in a sequence, we first need to identify the pattern or formula that describes the sequence. In this case, the sequence appears to be decreasing by 4, then decreasing by 6, and finally decreasing by 10. This suggests a quadratic pattern, where the nth term can be represented as a quadratic function of n. To find the specific nth term for this sequence, we would need more data points or information about the pattern.
7
To find the pattern in the sequence 3, 11, 21, 33, 47, 63, we first need to calculate the differences between consecutive terms: 8, 10, 12, 14, 16. We notice that the differences are increasing by 2 each time. This indicates a quadratic relationship. By finding the second differences (which are constant at 2), we can conclude that the sequence follows a quadratic equation of the form an^2 + bn + c. Therefore, the nth term for this sequence is given by the quadratic equation an^2 + bn + c, where a = 1, b = 2, and c = 0.
{5, 20, 45, 80, 125} = 5{1, 4, 9, 16, 25} = 5{1², 2², 3², 4², 5²} → U{n} = 5n²
10n + 1
15(1)
-5,120
The nth term of a sequence is the general formula for a sequence. The nth term of this particular sequence would be n+3. This is because each step in the sequence is plus 3 higher than the previous step.