A wavelength of 254 nm is commonly used in UV detectors because it effectively targets the absorption peak of many organic compounds, particularly those containing aromatic rings. This wavelength is also optimal for detecting nucleic acids and proteins, as they exhibit strong absorbance at this range. Additionally, 254 nm is a standard wavelength for disinfection applications, making it useful in various analytical and industrial settings. Overall, its effectiveness in detecting a wide range of substances makes it a preferred choice in UV detection.
Chat with our AI personalities
UV
If V is the midpoint of the segment UW, then you would use the Definition of a Midpoint, which states that two congruent segments are created.
If the discriminant is greater than zero (b^2 - 4ac) > 0, then the equation have two roots that are real and unequal. Further, the roots are rational if and only if (b^2 - 4ac) is a perfect square, otherwise the roots are irrational.Example:Find the equation whose roots are x = u/v and x = v/uSolution:x = u/vx - u/v = 0x = v/ux - v/u = 0Therefore:(x - u/v)(x - v/u) = (0)(0) or(x - u/v)(x - v/u) = 0Let c = u/v and d = v/u. We can write this equation in equation in the form of:(x - c)(x - d) = 0x^2 - cx - dx + CD = 0 orx^2 - (c +d)x + CD = 0The sum of the roots is:c + d = u/v + v/u = (u)(u)/(v)(u) + (v)(v)/(u)(v) = u^2/uv + v^2/uv = (u^2 + v^2)/uvThe product of the roots is:(c)(d) = (u/v)(v/u) = uv/vu = uv/uv = 1Substitute the sum and the product of the roots into the formula, and we'll have:x^2 - (c +d)x + CD = 0x^2 - [(u^2 + v^2)/uv]x + 1 = 0 Multiply both sides of the equation by uv(uv)[x^2 - ((u^2 + v^2)/uv))x + 1] = (uv)(0)(uv)x^2 - (u^2 + v^2)x + uv = 0 which is the equatiopn whose roots are u/v, v/u
uv - integral of (v * du)
Purely from observation of devices utilising UV rays i'd go with yes, as there are personal solar chargers that include mirrored reflectors to increase charge efficiencies.