Chat with our AI personalities
UV
If V is the midpoint of the segment UW, then you would use the Definition of a Midpoint, which states that two congruent segments are created.
If the discriminant is greater than zero (b^2 - 4ac) > 0, then the equation have two roots that are real and unequal. Further, the roots are rational if and only if (b^2 - 4ac) is a perfect square, otherwise the roots are irrational.Example:Find the equation whose roots are x = u/v and x = v/uSolution:x = u/vx - u/v = 0x = v/ux - v/u = 0Therefore:(x - u/v)(x - v/u) = (0)(0) or(x - u/v)(x - v/u) = 0Let c = u/v and d = v/u. We can write this equation in equation in the form of:(x - c)(x - d) = 0x^2 - cx - dx + CD = 0 orx^2 - (c +d)x + CD = 0The sum of the roots is:c + d = u/v + v/u = (u)(u)/(v)(u) + (v)(v)/(u)(v) = u^2/uv + v^2/uv = (u^2 + v^2)/uvThe product of the roots is:(c)(d) = (u/v)(v/u) = uv/vu = uv/uv = 1Substitute the sum and the product of the roots into the formula, and we'll have:x^2 - (c +d)x + CD = 0x^2 - [(u^2 + v^2)/uv]x + 1 = 0 Multiply both sides of the equation by uv(uv)[x^2 - ((u^2 + v^2)/uv))x + 1] = (uv)(0)(uv)x^2 - (u^2 + v^2)x + uv = 0 which is the equatiopn whose roots are u/v, v/u
uv - integral of (v * du)
Purely from observation of devices utilising UV rays i'd go with yes, as there are personal solar chargers that include mirrored reflectors to increase charge efficiencies.