x2 - 14x + 45 = (x - 9)(x - 5)
x2 + 14x + 48 = (x + 8)(x + 6)
49-apex
x2 - 14x = -49 ∴ x2 - 14x + 49 = 0 ∴ (x - 7)2 = 0 ∴ x = 7
x2+14x+40 = (x+4)(x+10) when factored
x2 - 14x + 45 = (x - 9)(x - 5)
x2 - 14x + 45 = (x - 5)(x - 9).
-x2+14x=49
The roots are: x = -5 and x = -9
x2-14x+45=0(x-9)(x-5)=0x-9=0 & x-5=0x=9 & x=5
-x2-14x-45 = -(x2+14x+45) delta = 142-4*1*45=16 so x2+14x+45=(x-(-14+4)/2) (x-(-14-4)/2) = (x+5)(x+9) so -x2-14x-45 = -(x+5)(x+9)
(x2 + 14x + 49) = (x + 7)2
49 x2 + 14x = -7 x2 + 14x + 49 = 42 (x + 7)2 = 42 x = -7 ± √42
x2 + 14x + 48 = (x + 8)(x + 6)
49-apex
The given expression does not have rational factors, so the question cannot be abut factorising. Evaluating x2 - 14x + 9 depends on the value of x.
x2 - 14x = -49 ∴ x2 - 14x + 49 = 0 ∴ (x - 7)2 = 0 ∴ x = 7