true.
The perpendicular bisector theorem states that if a point is on the perpendicular bisector of a line segment, then it is equidistant from the endpoints of that segment. Conversely, if a point is equidistant from the endpoints of a segment, it lies on the perpendicular bisector of that segment. This theorem is a fundamental concept in geometry, often used in constructions and proofs.
Converse of the Perpendicular Bisector Theorem - if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.Example: If DA = DB, then point D lies on the perpendicular bisector of line segment AB.you :))
The converse of perpendicular bisector theorem states that if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
The perpendicular bisector of a segment RS is the line that is perpendicular to RS at its midpoint and divides the segment into two equal parts. Any point on this bisector is equidistant from points R and S, meaning the distance from a point on the bisector to R is the same as the distance to S. This property makes the perpendicular bisector a key concept in geometry, especially in constructions and proofs involving distances and triangles.
perpendicular bisector
The perpendicular bisector theorem states that if a point is on the perpendicular bisector of a line segment, then it is equidistant from the endpoints of that segment. Conversely, if a point is equidistant from the endpoints of a segment, it lies on the perpendicular bisector of that segment. This theorem is a fundamental concept in geometry, often used in constructions and proofs.
Biconditional Statement for: Perpendicular Bisector Theorem: A point is equidistant if and only if the point is on the perpendicular bisector of a segment. Converse of the Perpendicular Bisector Theorem: A point is on the perpendicular bisector of the segment if and only if the point is equidistant from the endpoints of a segment.
on the perpendicular bisector of the segment.
If a point is on the perpendicular bisector of a segment, then it is equidistant, or the same distance, from the endpoints of the segment.
Perpendicular Bisector
Converse of the Perpendicular Bisector Theorem - if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.Example: If DA = DB, then point D lies on the perpendicular bisector of line segment AB.you :))
A perpendicular bisector is a line that divides a given line segment into halves, and is perpendicular to the line segment. An angle bisector is a line that bisects a given angle.
The converse of perpendicular bisector theorem states that if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
The perpendicular bisector of a line segment AB is the straight line perpendicular to AB through the midpoint of AB.
It's called a perpendicular bisector of the line segment.
perpendicular bisector
I believe this is called the perpendicular bisector.