answersLogoWhite

0

As I understand the question: yes, f(x) can be a function even if f(x) is not defined for all x. For example, f(x) = x/x is a function that is equal to 1 everywhere but at x=0, where it is undefined.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: If all x are not used is f a function?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Movies & Television

What is the relationship between roots and zeros and factors?

Given a function f, of a variable x, the roots of the equation are values of x for which f(x) = 0.If the function, f, happens to be a polynomial function, and r is a root of f(x) then (x - r) is a factor of f(x).


How do you prove decreasing function theorem?

this is the increasing function theorem, hope it helps "If F'(x) >= 0 , and all x's are and element of [a,b], Then F is increasing on [a,b]" use Mean Value Theorem (M.V.T) Let F'(x)>=0 on some interval Let x1< x2 (points from that interval) by M.V.T there is a point C which is an element of [x1,x2] such that F(x2)-F(x1) / X2- X1 = F'(C) this implies: F(x2)-F(x1) = F'(C) X [x2-x1] F'(C)>=0 [x2-x1]>0 therefore: F(x2)>=F(x1) Therefore: F is increasing on that interval.


Describe how the Factor Theorem can be used to determine whether x plus 1 is a factor of x3-2x2-8x-5?

The factor theorem states that for any polynomial function f(x), if f(a) = 0, then (x-a) is a factor of f(x). Let f(x) = x3-2x2-8x-5. If (x+1) is a factor, then f(-1) = 0. (x+1 = x - (-1)) Input x = -1 into f: (-1)3-2(-1)2-8(-1)-5 f(-1) = -1 -2 + 8 - 5 f(-1) = 0. Since f(-1) = 0, (x+1) is a factor of x3-2x2-8x-5. Q.E.D.


How can you use the zeros of a function to find the maximum or minimum value of the function?

You cannot. The function f(x) = x2 + 1 has no real zeros. But it does have a minimum.


Is the function n divided by 3 one to one and onto?

This depends on how you define your domain and codomain. f(n)=n/3 is one to one and onto when f is from R to R, but if we define f: X --> Y, where X = [0,3] and Y = [0,3], then f maps [0,3] to [0,1], so f is not onto in this case.