answersLogoWhite

0

Prime Factorization#Prime Factorization

251251

222522·2·3·3·7

3325311·23

42·22542·127

552553·5·17

62·32562·2·2·2·2·2·2·2

77257257

82·2·22582·3·43

93·32597·37

102·52602·2·5·13

11112613·3·29

122·2·32622·131

1313263263

142·72642·2·2·3·11

153·52655·53

162·2·2·22662·7·19

17172673·89

182·3·32682·2·67

1919269269

202·2·52702·3·3·3·5

213·7271271

222·112722·2·2·2·17

23232733·7·13

242·2·2·32742·137

255·52755·5·11

262·132762·2·3·23

273·3·3277277

282·2·72782·139

29292793·3·31

302·3·52802·2·2·5·7

3131281281

322·2·2·2·22822·3·47

333·11283283

342·172842·2·71

355·72853·5·19

362·2·3·32862·11·13

37372877·41

382·192882·2·2·2·2·3·3

393·1328917·17

402·2·2·52902·5·29

41412913·97

422·3·72922·2·73

4343293293

442·2·112942·3·7·7

453·3·52955·59

462·232962·2·2·37

47472973·3·3·11

482·2·2·2·32982·149

497·729913·23

502·5·53002·2·3·5·5

513·173017·43

522·2·133022·151

53533033·101

542·3·3·33042·2·2·2·19

555·113055·61

562·2·2·73062·3·3·17

573·19307307

582·293082·2·7·11

59593093·103

602·2·3·53102·5·31

6161311311

622·313122·2·2·3·13

633·3·7313313

642·2·2·2·2·23142·157

655·133153·3·5·7

662·3·113162·2·79

6767317317

682·2·173182·3·53

693·2331911·29

702·5·73202·2·2·2·2·2·5

71713213·107

722·2·2·3·33222·7·23

737332317·19

742·373242·2·3·3·3·3

753·5·53255·5·13

762·2·193262·163

777·113273·109

782·3·133282·2·2·41

79793297·47

802·2·2·2·53302·3·5·11

813·3·3·3331331

822·413322·2·83

83833333·3·37

842·2·3·73342·167

855·173355·67

862·433362·2·2·2·3·7

873·29337337

882·2·2·113382·13·13

89893393·113

902·3·3·53402·2·5·17

917·1334111·31

922·2·233422·3·3·19

933·313437·7·7

942·473442·2·2·43

955·193453·5·23

962·2·2·2·2·33462·173

9797347347

982·7·73482·2·3·29

993·3·11349349

1002·2·5·53502·5·5·7

1011013513·3·3·13

1022·3·173522·2·2·2·2·11

103103353353

1042·2·2·133542·3·59

1053·5·73555·71

1062·533562·2·89

1071073573·7·17

1082·2·3·3·33582·179

109109359359

1102·5·113602·2·2·3·3·5

1113·3736119·19

1122·2·2·2·73622·181

1131133633·11·11

1142·3·193642·2·7·13

1155·233655·73

1162·2·293662·3·61

1173·3·13367367

1182·593682·2·2·2·23

1197·173693·3·41

1202·2·2·3·53702·5·37

12111·113717·53

1222·613722·2·3·31

1233·41373373

1242·2·313742·11·17

1255·5·53753·5·5·5

1262·3·3·73762·2·2·47

12712737713·29

1282·2·2·2·2·2·23782·3·3·3·7

1293·43379379

1302·5·133802·2·5·19

1311313813·127

1322·2·3·113822·191

1337·19383383

1342·673842·2·2·2·2·2·2·3

1353·3·3·53855·7·11

1362·2·2·173862·193

1371373873·3·43

1382·3·233882·2·97

139139389389

1402·2·5·73902·3·5·13

1413·4739117·23

1422·713922·2·2·7·7

14311·133933·131

1442·2·2·2·3·33942·197

1455·293955·79

1462·733962·2·3·3·11

1473·7·7397397

1482·2·373982·199

1491493993·7·19

1502·3·5·54002·2·2·2·5·5

151151401401

1522·2·2·194022·3·67

1533·3·1740313·31

1542·7·114042·2·101

1555·314053·3·3·3·5

1562·2·3·134062·7·29

15715740711·37

1582·794082·2·2·3·17

1593·53409409

1602·2·2·2·2·54102·5·41

1617·234113·137

1622·3·3·3·34122·2·103

1631634137·59

1642·2·414142·3·3·23

1653·5·114155·83

1662·834162·2·2·2·2·13

1671674173·139

1682·2·2·3·74182·11·19

16913·13419419

1702·5·174202·2·3·5·7

1713·3·19421421

1722·2·434222·211

1731734233·3·47

1742·3·294242·2·2·53

1755·5·74255·5·17

1762·2·2·2·114262·3·71

1773·594277·61

1782·894282·2·107

1791794293·11·13

1802·2·3·3·54302·5·43

181181431431

1822·7·134322·2·2·2·3·3·3

1833·61433433

1842·2·2·234342·7·31

1855·374353·5·29

1862·3·314362·2·109

18711·1743719·23

1882·2·474382·3·73

1893·3·3·7439439

1902·5·194402·2·2·5·11

1911914413·3·7·7

1922·2·2·2·2·2·34422·13·17

193193443443

1942·974442·2·3·37

1953·5·134455·89

1962·2·7·74462·223

1971974473·149

1982·3·3·114482·2·2·2·2·2·7

199199449449

2002·2·2·5·54502·3·3·5·5

2013·6745111·41

2022·1014522·2·113

2037·294533·151

2042·2·3·174542·227

2055·414555·7·13

2062·1034562·2·2·3·19

2073·3·23457457

2082·2·2·2·134582·229

20911·194593·3·3·17

2102·3·5·74602·2·5·23

211211461461

2122·2·534622·3·7·11

2133·71463463

2142·1074642·2·2·2·29

2155·434653·5·31

2162·2·2·3·3·34662·233

2177·31467467

2182·1094682·2·3·3·13

2193·734697·67

2202·2·5·114702·5·47

22113·174713·157

2222·3·374722·2·2·59

22322347311·43

2242·2·2·2·2·74742·3·79

2253·3·5·54755·5·19

2262·1134762·2·7·17

2272274773·3·53

2282·2·3·194782·239

229229479479

2302·5·234802·2·2·2·2·3·5

2313·7·1148113·37

2322·2·2·294822·241

2332334833·7·23

2342·3·3·134842·2·11·11

2355·474855·97

2362·2·594862·3·3·3·3·3

2373·79487487

2382·7·174882·2·2·61

2392394893·163

2402·2·2·2·3·54902·5·7·7

241241491491

2422·11·114922·2·3·41

2433·3·3·3·349317·29

2442·2·614942·13·19

2455·7·74953·3·5·11

2462·3·414962·2·2·2·31

24713·194977·71

2482·2·2·314982·3·83

2493·83499499

2502·5·5·55002·2·5·5·5

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Movies & Television

What does express each number as a product of its prime factors mean?

All composite numbers can be expressed as unique products of prime numbers. This is accomplished by dividing the original number and its factors by prime numbers until all the factors are prime. A factor tree can help you visualize this. Example: 210 210 Divide by two. 105,2 Divide by three. 35,3,2 Divide by five. 7,5,3,2 Stop. All the factors are prime. 2 x 3 x 5 x 7 = 210 That's the prime factorization of 210.


What is a product of a prime factor?

All composite numbers can be expressed as unique products of prime numbers. This is accomplished by dividing the original number and its factors by prime numbers until all the factors are prime. A factor tree can help you visualize this. Example: 210 210 Divide by two. 105,2 Divide by three. 35,3,2 Divide by five. 7,5,3,2 Stop. All the factors are prime. 2 x 3 x 5 x 7 = 210 That's the prime factorization of 210.


Why is it important to be able to write large numbers as factors of prime numbers?

All composite numbers can be expressed as the product of prime numbers. This is accomplished by dividing the original number by prime numbers until all the factors are prime. A factor tree can help you visualize this. Example: 30 30 Divide by two. 15,2 Divide by three. 5,3,2 Stop. All the factors are prime. 2 x 3 x 5 = 30 That's the prime factorization of 30.


Two common factors of 42 and 231?

To find the common factors of 42 and 231, we first need to find the prime factorization of each number. The prime factorization of 42 is 2 x 3 x 7, and the prime factorization of 231 is 3 x 7 x 11. The common factors of 42 and 231 are the prime numbers that appear in both factorizations, which are 3 and 7. Therefore, the two common factors of 42 and 231 are 3 and 7.


Will an odd number ever have even numbers in its exponential form?

All even numbers have 2 as a factor, but no odd numbers do. The only even number that will appear as a factor in prime factorizations is 2, because it is the only even prime number. Thus, an odd number will not have even numbers in its prime factorization because an odd number is not evenly divisible by 2. The only even numbers that could appear in the exponential form are the exponents. For example 81 is 34. The factor is an odd number - 3, while the exponent is an even number - 4.