Prime Factorization#Prime Factorization
251251
222522·2·3·3·7
3325311·23
42·22542·127
552553·5·17
62·32562·2·2·2·2·2·2·2
77257257
82·2·22582·3·43
93·32597·37
102·52602·2·5·13
11112613·3·29
122·2·32622·131
1313263263
142·72642·2·2·3·11
153·52655·53
162·2·2·22662·7·19
17172673·89
182·3·32682·2·67
1919269269
202·2·52702·3·3·3·5
213·7271271
222·112722·2·2·2·17
23232733·7·13
242·2·2·32742·137
255·52755·5·11
262·132762·2·3·23
273·3·3277277
282·2·72782·139
29292793·3·31
302·3·52802·2·2·5·7
3131281281
322·2·2·2·22822·3·47
333·11283283
342·172842·2·71
355·72853·5·19
362·2·3·32862·11·13
37372877·41
382·192882·2·2·2·2·3·3
393·1328917·17
402·2·2·52902·5·29
41412913·97
422·3·72922·2·73
4343293293
442·2·112942·3·7·7
453·3·52955·59
462·232962·2·2·37
47472973·3·3·11
482·2·2·2·32982·149
497·729913·23
502·5·53002·2·3·5·5
513·173017·43
522·2·133022·151
53533033·101
542·3·3·33042·2·2·2·19
555·113055·61
562·2·2·73062·3·3·17
573·19307307
582·293082·2·7·11
59593093·103
602·2·3·53102·5·31
6161311311
622·313122·2·2·3·13
633·3·7313313
642·2·2·2·2·23142·157
655·133153·3·5·7
662·3·113162·2·79
6767317317
682·2·173182·3·53
693·2331911·29
702·5·73202·2·2·2·2·2·5
71713213·107
722·2·2·3·33222·7·23
737332317·19
742·373242·2·3·3·3·3
753·5·53255·5·13
762·2·193262·163
777·113273·109
782·3·133282·2·2·41
79793297·47
802·2·2·2·53302·3·5·11
813·3·3·3331331
822·413322·2·83
83833333·3·37
842·2·3·73342·167
855·173355·67
862·433362·2·2·2·3·7
873·29337337
882·2·2·113382·13·13
89893393·113
902·3·3·53402·2·5·17
917·1334111·31
922·2·233422·3·3·19
933·313437·7·7
942·473442·2·2·43
955·193453·5·23
962·2·2·2·2·33462·173
9797347347
982·7·73482·2·3·29
993·3·11349349
1002·2·5·53502·5·5·7
1011013513·3·3·13
1022·3·173522·2·2·2·2·11
103103353353
1042·2·2·133542·3·59
1053·5·73555·71
1062·533562·2·89
1071073573·7·17
1082·2·3·3·33582·179
109109359359
1102·5·113602·2·2·3·3·5
1113·3736119·19
1122·2·2·2·73622·181
1131133633·11·11
1142·3·193642·2·7·13
1155·233655·73
1162·2·293662·3·61
1173·3·13367367
1182·593682·2·2·2·23
1197·173693·3·41
1202·2·2·3·53702·5·37
12111·113717·53
1222·613722·2·3·31
1233·41373373
1242·2·313742·11·17
1255·5·53753·5·5·5
1262·3·3·73762·2·2·47
12712737713·29
1282·2·2·2·2·2·23782·3·3·3·7
1293·43379379
1302·5·133802·2·5·19
1311313813·127
1322·2·3·113822·191
1337·19383383
1342·673842·2·2·2·2·2·2·3
1353·3·3·53855·7·11
1362·2·2·173862·193
1371373873·3·43
1382·3·233882·2·97
139139389389
1402·2·5·73902·3·5·13
1413·4739117·23
1422·713922·2·2·7·7
14311·133933·131
1442·2·2·2·3·33942·197
1455·293955·79
1462·733962·2·3·3·11
1473·7·7397397
1482·2·373982·199
1491493993·7·19
1502·3·5·54002·2·2·2·5·5
151151401401
1522·2·2·194022·3·67
1533·3·1740313·31
1542·7·114042·2·101
1555·314053·3·3·3·5
1562·2·3·134062·7·29
15715740711·37
1582·794082·2·2·3·17
1593·53409409
1602·2·2·2·2·54102·5·41
1617·234113·137
1622·3·3·3·34122·2·103
1631634137·59
1642·2·414142·3·3·23
1653·5·114155·83
1662·834162·2·2·2·2·13
1671674173·139
1682·2·2·3·74182·11·19
16913·13419419
1702·5·174202·2·3·5·7
1713·3·19421421
1722·2·434222·211
1731734233·3·47
1742·3·294242·2·2·53
1755·5·74255·5·17
1762·2·2·2·114262·3·71
1773·594277·61
1782·894282·2·107
1791794293·11·13
1802·2·3·3·54302·5·43
181181431431
1822·7·134322·2·2·2·3·3·3
1833·61433433
1842·2·2·234342·7·31
1855·374353·5·29
1862·3·314362·2·109
18711·1743719·23
1882·2·474382·3·73
1893·3·3·7439439
1902·5·194402·2·2·5·11
1911914413·3·7·7
1922·2·2·2·2·2·34422·13·17
193193443443
1942·974442·2·3·37
1953·5·134455·89
1962·2·7·74462·223
1971974473·149
1982·3·3·114482·2·2·2·2·2·7
199199449449
2002·2·2·5·54502·3·3·5·5
2013·6745111·41
2022·1014522·2·113
2037·294533·151
2042·2·3·174542·227
2055·414555·7·13
2062·1034562·2·2·3·19
2073·3·23457457
2082·2·2·2·134582·229
20911·194593·3·3·17
2102·3·5·74602·2·5·23
211211461461
2122·2·534622·3·7·11
2133·71463463
2142·1074642·2·2·2·29
2155·434653·5·31
2162·2·2·3·3·34662·233
2177·31467467
2182·1094682·2·3·3·13
2193·734697·67
2202·2·5·114702·5·47
22113·174713·157
2222·3·374722·2·2·59
22322347311·43
2242·2·2·2·2·74742·3·79
2253·3·5·54755·5·19
2262·1134762·2·7·17
2272274773·3·53
2282·2·3·194782·239
229229479479
2302·5·234802·2·2·2·2·3·5
2313·7·1148113·37
2322·2·2·294822·241
2332334833·7·23
2342·3·3·134842·2·11·11
2355·474855·97
2362·2·594862·3·3·3·3·3
2373·79487487
2382·7·174882·2·2·61
2392394893·163
2402·2·2·2·3·54902·5·7·7
241241491491
2422·11·114922·2·3·41
2433·3·3·3·349317·29
2442·2·614942·13·19
2455·7·74953·3·5·11
2462·3·414962·2·2·2·31
24713·194977·71
2482·2·2·314982·3·83
2493·83499499
2502·5·5·55002·2·5·5·5
All composite numbers can be expressed as unique products of prime numbers. This is accomplished by dividing the original number and its factors by prime numbers until all the factors are prime. A factor tree can help you visualize this. Example: 210 210 Divide by two. 105,2 Divide by three. 35,3,2 Divide by five. 7,5,3,2 Stop. All the factors are prime. 2 x 3 x 5 x 7 = 210 That's the prime factorization of 210.
All composite numbers can be expressed as unique products of prime numbers. This is accomplished by dividing the original number and its factors by prime numbers until all the factors are prime. A factor tree can help you visualize this. Example: 210 210 Divide by two. 105,2 Divide by three. 35,3,2 Divide by five. 7,5,3,2 Stop. All the factors are prime. 2 x 3 x 5 x 7 = 210 That's the prime factorization of 210.
All composite numbers can be expressed as the product of prime numbers. This is accomplished by dividing the original number by prime numbers until all the factors are prime. A factor tree can help you visualize this. Example: 30 30 Divide by two. 15,2 Divide by three. 5,3,2 Stop. All the factors are prime. 2 x 3 x 5 = 30 That's the prime factorization of 30.
To find the common factors of 42 and 231, we first need to find the prime factorization of each number. The prime factorization of 42 is 2 x 3 x 7, and the prime factorization of 231 is 3 x 7 x 11. The common factors of 42 and 231 are the prime numbers that appear in both factorizations, which are 3 and 7. Therefore, the two common factors of 42 and 231 are 3 and 7.
All even numbers have 2 as a factor, but no odd numbers do. The only even number that will appear as a factor in prime factorizations is 2, because it is the only even prime number. Thus, an odd number will not have even numbers in its prime factorization because an odd number is not evenly divisible by 2. The only even numbers that could appear in the exponential form are the exponents. For example 81 is 34. The factor is an odd number - 3, while the exponent is an even number - 4.
10 = 2 × 5
2x2x13 these are all of the prime factors that multiply to equal 52
2 x 29 = 58
24 x 33 = 432
Prime factorization of 32 = 2 * 2 * 2 * 2 * 2
49 = 7 x 7 or 72
2 x 2 x 13 = 52
1 3 and 11 are the prime factors that go into 99 all together it is... 1x3x3x11=99
2 x 2 x 3 x 5 = 60
210 = 2 x 3 x 5 x 7
There's only one. 2 x 2 x 13
There is an infinite number of prime numbers after 500!