Whenever there are polynomials of the form aX2+bX+c=0 then this type of equation is know as a quadratic equation.
to solve these we usually break b into two parts such that there product is equal to a*c and I hope you know how to factor polynomials.
Chat with our AI personalities
quadratic
A third degree polynomial is called a cubic - regardless of how many terms it has, it is named after the highest power.x3+ x - 1 is still a cubic, despite the lack of an x2term. Likewise, x2- 4 is still a quadratic, and x4- 2x is called a quartic.
Assuming that you are reffering to something like this: (x - h)(x - k) = 0 x = h, x = k This is the fundamental theorem of algebra which states that is given a polynomial (multiple terms raised to positive powers ex) x^3 + 2x + 1), then the number of solutions to that polynomial is equal to the degree (or highest exponent) in the polynomial. The factorization in the beginning was dealing with a quadratic equation - when foiled out it equals x^2 - hx - kx + hk. The highest exponent in the quadratic is two and therefore there are two solutions. You can even think back to the factorization again: if x = h then the whole equation is 0, if x = k then the whole equation is 0.
Oh, dude, it's like super simple. So, basically, you classify polynomials based on their degree, which is the highest power of the variable in the polynomial. If the highest power is 1, it's a linear polynomial; if it's 2, it's quadratic; and if it's 3, it's cubic. Anything beyond that, like a fourth-degree polynomial or higher, we just call them "higher-degree polynomials." Easy peasy, lemon squeezy!
The discriminant of the quadratic equation ax2+bx+c = 0 is the value of b2-4ac When b2-4ac = 0 then there are 2 equal roots. When b2-4ac > 0 then there are 2 different roots. When b2-4ac < 0 then there are no roots at all.