A position time graph can show you velocity. As time changes, so does position, and the velocity of the object can be determined. For a speed time graph, you can derive acceleration. As time changes, so does velocity, and the acceleration of the object can be determined.If you are plotting velocity (speed) versus time, the slope is the acceleration.
To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.
No, the slope on a position-time graph represents the object's velocity, not acceleration. Acceleration would be represented by the slope of the velocity-time graph.
Motion can be represented graphically using position-time graphs, velocity-time graphs, and acceleration-time graphs. These graphs provide information about how an object's position, velocity, and acceleration change over time. Position-time graphs show the object's position at different times, velocity-time graphs show how the velocity changes over time, and acceleration-time graphs show how the acceleration changes over time.
A position-time graph shows the relationship between an object's position and time. The position of the object is typically plotted on the y-axis, while time is on the x-axis. The slope of the graph represents the object's velocity, with a steeper slope indicating a higher velocity.
A position time graph can show you velocity. As time changes, so does position, and the velocity of the object can be determined. For a speed time graph, you can derive acceleration. As time changes, so does velocity, and the acceleration of the object can be determined.If you are plotting velocity (speed) versus time, the slope is the acceleration.
To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.
The velocity position time graph is rightward. This can change at anytime.
If velocity is constant, the slope of the graph on a position vs. time graph will be a straight line. The slope of this line will represent the constant velocity of the object.
As, in the velocity-time graph, curves passes through zero means 'when time is zero velocity is zero'. Velocity is time derivative of displacement. So displacement is maximum or minimum when time is zero in position-time graph.
If an x-t graph is a position-time graph, velocity is the slope of the line on the graph.
Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.
No, the slope on a position-time graph represents the object's velocity, not acceleration. Acceleration would be represented by the slope of the velocity-time graph.
A girl walks along a straight path to drop a letter in the letterbox and comes back to his initial position. Her displacement-time graph. Plot a velocity-time graph for the same
velocity
It is the average velocity.
Velocity is NOT the slope of the acceleration vs. time graph. Velocity is the area under the acceleration vs. time graph. Velocity is the slope of a position vs. time graph, though. For you Calculus Junkies, v = the integral of acceleration with respect to time.