Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X
and a position time graph is distance (m) in the Y coordinate and time (s) in the X
if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.
If an x-t graph is a position-time graph, velocity is the slope of the line on the graph.
-- Pick two points on the graph. -- Find the difference in time between the two points. -- Find the difference in displacement between the same two points. -- (Difference in displacement) divided by (difference in time) is the average Speed . You can't tell anything about velocity from the graph except its magnitude, because the graph displays no information regarding the direction of motion.
It is the average velocity.
As, in the velocity-time graph, curves passes through zero means 'when time is zero velocity is zero'. Velocity is time derivative of displacement. So displacement is maximum or minimum when time is zero in position-time graph.
You can't determine velocity from that graph, because the graph tells you nothing about the direction of the motion. But you can determine the speed. The speed at any moment is the slope of a line that's tangent to the graph at that moment.
To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.
You can calculate the velocity of a moving object from two points on a position-time graph by finding the slope of the line connecting those two points. The slope represents the average velocity of the object between those two points. Divide the change in position by the change in time to find the velocity.
To find the velocity of a position-time graph, you calculate the slope of the graph at a specific point. The slope represents the rate of change of position with respect to time, which is the velocity. The steeper the slope, the greater the velocity.
speed does not indicate direction, so there is no negative on the graph.
If an x-t graph is a position-time graph, velocity is the slope of the line on the graph.
If velocity is constant, the slope of the graph on a position vs. time graph will be a straight line. The slope of this line will represent the constant velocity of the object.
The position vs time graph of an object shows its location at different times, while the velocity vs time graph shows how fast the object is moving at those times. The slope of the position vs time graph represents the velocity on the velocity vs time graph.
The slope of a position vs time graph represents the velocity of the object. It indicates how the position changes over time, with a steeper slope corresponding to a higher velocity and a flatter slope corresponding to a lower velocity.
To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.
The velocity position time graph is rightward. This can change at anytime.
A position-time graph shows the relationship between an object's position and time. The position of the object is typically plotted on the y-axis, while time is on the x-axis. The slope of the graph represents the object's velocity, with a steeper slope indicating a higher velocity.
A position time graph can show you velocity. As time changes, so does position, and the velocity of the object can be determined. For a speed time graph, you can derive acceleration. As time changes, so does velocity, and the acceleration of the object can be determined.If you are plotting velocity (speed) versus time, the slope is the acceleration.