The amount of time it would take an object to travel a distance with constant acceleration depends on its initial velocity, according to the equation: d = vit + 0.5at2 Where d is displacement, vi is initial velocity, t is time, and a is acceleration. Note: if the object starts from rest, its initial velocity, logically, is zero.
You can use the equation: distance = (initial velocity + final velocity) / 2 * time. This formula assumes constant acceleration.
To find the acceleration of an object moving in a straight line, you must calculate the change in velocity during a unit of time. Acceleration is the rate of change of velocity over time, not distance. It is given by the formula acceleration = (final velocity - initial velocity) / time.
In general, nowhere, because acceleration is the second derivative of distance with respect to time. However, in the special case of a constant acceleration, the acceleration will be twice the slope of the line, since distance = 0.5 * time squared.
Find out the time using speed and acceleration, (time=speed/acceleration) and then use it to find out uniform velocity. From that find out uniform acceleration. (as uniform acceleration is equal changes of velocity over equal intervals of time)
The formula for speed is speed = distance / time, where speed is measured in m/s or km/h. The formula for acceleration is acceleration = change in velocity / time taken, where acceleration is measured in m/s².
To find acceleration when given distance and time, you can use the formula: acceleration 2 (distance / time2). Simply divide the distance by the square of the time to calculate the acceleration.
You can't you need the time and distance (once you have that it's just distance/time).
Distance = (1/2 of acceleration) x (time squared)You can change this around to solve it for acceleration or time.(Time squared) = (distance)/(half of acceleration)Time = the square root of [ (2 x distance)/(acceleration) ]Be careful . . .This is only true if the distance and the speed are both zero when the time begins.
Acceleration= Distance/time (distance divided by time) That's the dumbest answer I've ever heard.. Acceleration = Final Velocity - Initial Velocity/Time Velocity = Displacement/Time So you can't calculate acceleration from distance and time, you can only do velocity.
To find the acceleration of an object, you can use the formula: acceleration change in velocity / time taken. If you have the distance and time measurements, you can calculate the velocity by dividing the distance by the time. Then, you can find the change in velocity by subtracting the initial velocity from the final velocity. Finally, divide the change in velocity by the time taken to find the acceleration.
To find free-fall acceleration using only distance and initial speed, you can use the kinematic equation: distance = (1/2) * acceleration * time^2. Since the initial speed affects the time of fall, you would need to know the time of fall or other variables in order to solve for acceleration with just distance and initial speed.
If you are only given total distance and total time you cannot. If you are given distance as a function of time, then the first derivative of distance with respect to time, ds/dt, gives the velocity. Evaluate this function at t = 0 for initial velocity. The second derivative, d2s/dt2 gives the acceleration as a function of time.
You can use the equation: distance = (initial velocity + final velocity) / 2 * time. This formula assumes constant acceleration.
a = (v2 - u2)/2s where a is the acceleration between the initial point in time and the final point in time, u is the initial velocity v is the final velocity s is the distance travelled
To find displacement using acceleration and time, you can use the formula: displacement 0.5 acceleration time2. This formula calculates the distance an object has traveled based on its acceleration and the time it has been accelerating.
To find the distance traveled by an object with a given acceleration and initial velocity, you can use the formula: distance (initial velocity time) (0.5 acceleration time2). This formula takes into account the initial velocity, acceleration, and time the object has been moving to calculate the total distance traveled.
I'm fairly sure that you can't. Not without the acceleration or the time, at least.