answersLogoWhite

0


Best Answer

The amount of time it would take an object to travel a distance with constant acceleration depends on its initial velocity, according to the equation: d = vit + 0.5at2 Where d is displacement, vi is initial velocity, t is time, and a is acceleration. Note: if the object starts from rest, its initial velocity, logically, is zero.

User Avatar

Wiki User

āˆ™ 15y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

āˆ™ 11y ago

-- With the distance the mass moved and the time it took, all you can find

is its average speed during that time.

-- If you had its two different distances at two different times, then you could

find an acceleration.

-- With an acceleration and the mass, you can then find the force on it.

This answer is:
User Avatar

User Avatar

Wiki User

āˆ™ 9y ago

If you assume constant acceleration, then, when both initial and final velocity are zero, the velocity is zero all the time, and there is no movement. If the acceleration is variable, you can integrate to find the distance covered; in this case, if the resulting expression is not too complex, you might be able to solve for time.

This answer is:
User Avatar

User Avatar

Wiki User

āˆ™ 12y ago

Time = distance / average speed

Average speed = 1/2 (initial + final)

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you find time with only distance and acceleration when Vi and VF are 0?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

How do you find the distance given only the initial velocity traveled time and final velocity?

You can use the equation: distance = (initial velocity + final velocity) / 2 * time. This formula assumes constant acceleration.


To find the acceleration of an object moving in a straight line you must calculate the charge in distance during unit of time?

To find the acceleration of an object moving in a straight line, you must calculate the change in velocity during a unit of time. Acceleration is the rate of change of velocity over time, not distance. It is given by the formula acceleration = (final velocity - initial velocity) / time.


Where is acceleration represented on a distance verses time squared graph?

In general, nowhere, because acceleration is the second derivative of distance with respect to time. However, in the special case of a constant acceleration, the acceleration will be twice the slope of the line, since distance = 0.5 * time squared.


What is the formula for speed and acceleration?

The formula for speed is speed = distance / time, where speed is measured in m/s or km/h. The formula for acceleration is acceleration = change in velocity / time taken, where acceleration is measured in m/sĀ².


How do you find the uniform acceleration if the speed and acceleration are given?

Find out the time using speed and acceleration, (time=speed/acceleration) and then use it to find out uniform velocity. From that find out uniform acceleration. (as uniform acceleration is equal changes of velocity over equal intervals of time)

Related questions

How do you find acceleration when only given distances?

You can't you need the time and distance (once you have that it's just distance/time).


How do you find time when given distance and acceleration?

Distance = (1/2 of acceleration) x (time squared)You can change this around to solve it for acceleration or time.(Time squared) = (distance)/(half of acceleration)Time = the square root of [ (2 x distance)/(acceleration) ]Be careful . . .This is only true if the distance and the speed are both zero when the time begins.


How do you calculate acceleration from distance and time?

Acceleration= Distance/time (distance divided by time) That's the dumbest answer I've ever heard.. Acceleration = Final Velocity - Initial Velocity/Time Velocity = Displacement/Time So you can't calculate acceleration from distance and time, you can only do velocity.


How do I find the free-fall acceleration only knowing the variables of distance and initial speed?

To find free-fall acceleration using only distance and initial speed, you can use the kinematic equation: distance = (1/2) * acceleration * time^2. Since the initial speed affects the time of fall, you would need to know the time of fall or other variables in order to solve for acceleration with just distance and initial speed.


How do you find the acceleration and initial velocity given only the distance and time?

If you are only given total distance and total time you cannot. If you are given distance as a function of time, then the first derivative of distance with respect to time, ds/dt, gives the velocity. Evaluate this function at t = 0 for initial velocity. The second derivative, d2s/dt2 gives the acceleration as a function of time.


How do you find the distance given only the initial velocity traveled time and final velocity?

You can use the equation: distance = (initial velocity + final velocity) / 2 * time. This formula assumes constant acceleration.


How do you find acceleration falling object with only speed and distance?

a = (v2 - u2)/2s where a is the acceleration between the initial point in time and the final point in time, u is the initial velocity v is the final velocity s is the distance travelled


How do you find the weight of an object if you only have the amount of work and the distance?

I'm fairly sure that you can't. Not without the acceleration or the time, at least.


To find the acceleration of an object moving in a straight line you must calculate the charge in distance during unit of time?

To find the acceleration of an object moving in a straight line, you must calculate the change in velocity during a unit of time. Acceleration is the rate of change of velocity over time, not distance. It is given by the formula acceleration = (final velocity - initial velocity) / time.


How do you find the acceleration if time is not given?

To find the acceleration if the time is not given, you will need to know the velocity and the distance. Then, use this equation: d = vt + (1/2)at2 to solve the problem by plugging in your numbers for the distance and the velocity.


How do you find a final velocity without distance but given time?

Without distance, you have to know time, initial velocity, and acceleration, in order to find final velocity.


What would you use to find the acceleration?

The answer depends on the context: You can find the acceleration if you know any three of : initial velocity, final velocity, time, distance travelled. You can find it if you know the mass and force. You know the two masses and the distance between them (gravitational acceleration).