Instantaneous acceleration.
Chat with our AI personalities
The slope of the instantaneous speed-vs-time graph represents the acceleration of the object. A positive slope indicates the object is accelerating in the positive direction, while a negative slope indicates acceleration in the negative direction. The steeper the slope, the greater the magnitude of the acceleration.
Instantaneous acceleration at any point on a velocity-time graph can be determined by calculating the slope of the tangent line at that specific point. A steeper slope represents a higher acceleration, while a shallower slope indicates a lower acceleration.
The slope of a line drawn tangent to a point on a position vs. time graph represents the instantaneous velocity of the object at that point. It describes how the position of the object is changing at that exact moment in time.
To find instantaneous velocity from a position-time graph, you calculate the slope of the tangent line at a specific point on the graph. The slope represents the rate of change of position at that instant, which is equivalent to the velocity at that particular moment.
No, the slope on a position-time graph represents the object's velocity, not acceleration. Acceleration would be represented by the slope of the velocity-time graph.
The acceleration of the ball can be estimated by calculating the slope of the velocity versus time graph. If the graph is a straight line, the slope represents the acceleration. The steeper the slope, the greater the acceleration. If the graph is curved, the instantaneous acceleration can be estimated by finding the slope of the tangent line at a specific point on the curve.