You can't, since the slope of the graph means average velocity and the area of the graph has no meaning. The only way to find instantaneous velocity from position-time gragh is by plugging the data into the kinematic equations to get the answer.
Edit: Actually you can if you take the derivative of the equation of the curve it will give you the equation of the velocity curve
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
this time is basically the instant when an object has a particular velocity(instantaneous velocity). so on the graph draw a line from the particular value of the velocity and then draw a vertical line on time axis to find the time for that velocity.
You can calculate the velocity of a moving object from two points on a position-time graph by finding the slope of the line connecting those two points. The slope represents the average velocity of the object between those two points. Divide the change in position by the change in time to find the velocity.
if the acceleration is constant, then it is a parabola (a=V*t+(at^2)/2). if it isn't, and you are give it's formula in relation to time, then it is possible to find the distance formula by using higher level mathematics(integrals).
To create an acceleration-time graph from a velocity-time graph, you need to find the slope of the velocity-time graph at each point. The slope represents the acceleration at that specific instant. Plot these acceleration values against time to get the acceleration-time graph.
To calculate velocity from a position-time graph, you can find the slope of the line tangent to the curve at a specific point. This slope represents the instantaneous velocity at that point. Alternatively, you can calculate the average velocity over a specific time interval by finding the change in position divided by the change in time.
To find the velocity of a position-time graph, you calculate the slope of the graph at a specific point. The slope represents the rate of change of position with respect to time, which is the velocity. The steeper the slope, the greater the velocity.
To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.
It is the gradient (slope) of the line.
To find the position from a velocity-vs-time graph, you need to calculate the area under the velocity curve. If the velocity is constant, the position can be found by multiplying the velocity by the time. If the velocity is changing, you need to calculate the area under the curve using calculus to determine the position.
To find the position of an object from a velocity-time graph, you need to calculate the area under the curve of the graph. This area represents the displacement of the object.
To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.
With great difficulty since the question does not specify what aspect of the object's instantaneous. Speed, position, acceleration?
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
A distance-time graph allows you to find information such as the speed of an object (slope of the graph), the distance traveled by the object over a specific time period, and whether the object is moving at a constant speed or accelerating. It provides a visual representation of how the position of an object changes over time.
this time is basically the instant when an object has a particular velocity(instantaneous velocity). so on the graph draw a line from the particular value of the velocity and then draw a vertical line on time axis to find the time for that velocity.
To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.