multiplication/division: least number of significant figures
addition/subtraction: least number of numbers to the right of decimal point
0.0454
The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.
Take the least number of decimal places when adding or subtracting, therefore the answer is 17 to no decimal places.If it was 14 x 3.078 the answer would be 43 to 2 significant figures. The rule for multiplication/division is to use the least number of sig figs in the components: 14 has 2 and 3.078 has 4 so the answer should use 2.
There will be three significant figures in the answer to 223.4 times 7.5, which is 1675.5. The least number of significant figures in the original numbers (223.4 and 7.5) is 3, so the answer should also have 3 significant figures.
32.2
addition multiplication division subtraction
For multiplication/division, use the least number of significant figures (ie 6.24 * 2.0 = 12). For addition subtraction, use the least specific number (ie 28.24 - 2.1 = 26.1)
To determine the correct number of significant figures in a calculation involving both addition and multiplication, follow these steps: Perform the addition or subtraction operation first, and count the number of decimal places in the result. For multiplication or division, count the number of significant figures in each number being multiplied or divided. The final answer should have the same number of significant figures as the number with the least number of significant figures in the calculation.
When performing calculations involving significant figures in both multiplication and addition operations, ensure accuracy by following these steps: For multiplication and division, the result should have the same number of significant figures as the measurement with the fewest significant figures. For addition and subtraction, the result should be rounded to the same decimal place as the measurement with the fewest decimal places. By applying these rules, you can maintain the accuracy of your calculations involving significant figures.
The least number of significant figures in any number of the problem determines the number of significant figures in the answer.
It depends on the operation - for multiplication, the ammount of significant figures is the same as the multiple that has the least. Same for division. For subtraction and addition, the significant figures are decided by the least ammount of spaces past the decimal in the answer. For example, 30.7+2.111111111 would be 30.8
The result is 457,50 - with two significant figures.
The accuracy of the answer is limited to the LEAST significant figures of the input. So if two measured quantities are multiplied or divided, one of which is accurate to only two significant figures, and other to six significant figures, the answer is only accurate to two significant figures. HOWEVER: use all the figures you have for the calculation, and then round your answer to two significant figures. Also, however, remember that if you are multiplying by an actual exact number, as in doubling, the significant figures of that 2 is unlimited, so the answer is only limited by the significant figures of the number you are doubling.
When performing calculations involving addition, the result should be rounded to the same decimal place as the least precise number being added. For multiplication and division, the result should have the same number of significant figures as the least precise number in the calculation.
When adding or multiplying numbers, the result should have the same number of decimal places as the number with the fewest decimal places. For addition, the result should have the same number of significant figures as the number with the fewest significant figures. For multiplication, the result should have the same number of significant figures as the number with the fewest significant figures.
0.0454
When performing mathematical operations with significant figures, the result should be rounded to the least number of decimal places in the original numbers. Addition and subtraction should be rounded to the least number of decimal places, while multiplication and division should be rounded to the least number of significant figures.