7 8 9 10 11 12!
Chat with our AI personalities
There are 32 possible subset from the set {1, 2, 3, 4, 5}, ranging from 0 elements (the empty set) to 5 elements (the whole set): 0 elements: {} 1 element: {1}, {2}, {3}, {4}, {5} 2 elements: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4,}, {3, 5}, {4, 5} 3 elements: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5} 4 elements: {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5} 5 elements: {1, 2, 3, 4, 5} The number of sets in each row above is each successive column from row 5 of Pascal's triangle. This can be calculated using the nCr formula where n = 5 and r is the number of elements (r = 0, 1, ..., 5). The total number of subset is given by the sum of row 5 of Pascal's triangle which is given by the formula 2^row, which is this case is 2^5 = 32.
1 1/4 - 3/4 = (1×4+1)/4 - 3/4 = 5/4 - 3/4 = (5-3)/4 = 2/4 = (1×2)/(2×2) = 1/2
If you roll two dice, the following reuslts are possible: 2: 1+1 3: 1+2 , 2+1 4: 1+3, 2+2, 3+1 5: 1+4, 2+3, 3+2, 4+1 6: 1+5, 2+4, 3+3, 4+2, 5+1 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1 8: 2+6, 3+5, 4+4, 5+3, 6+2 9: 3+6, 4+5, 5+4, 6+3 10: 4+6, 5+5, 6+4 11: 5+6, 6+5 12: 6+6 As you can see, the greatest number of permutations result in a total of 7. Its probability is 6/36 or 1/6.
+4 +3 +3 -4 -3 -2 0 -1 +3 +1+1 0 +1
5 1/4. LCD=4 3 1/2 + 1 3/4 3 2/4 + 1 3/4 4 5/4 5 1/4