answersLogoWhite

0

4 J in the X F?

Updated: 4/28/2022
User Avatar

Wiki User

14y ago

Best Answer

Judges in the X Factor

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: 4 J in the X F?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

When was J. F. X. O'Brien born?

J. F. X. O'Brien was born in 1828.


When did J. F. X. O'Brien die?

J. F. X. O'Brien died in 1905.


What has the author F X J D'Ambrosio written?

F. X. J. D'Ambrosio has written: 'Prepare or deter?'


Write a program to obtain transpose of a 4 X 4 Matrix in c using functions?

void main() { int arr[4][4]; int i,j,a,b,f; printf("\nInput numbers to 4*4 matrix"); for(i=0;i<4;i++) { for(j=0;j<4;j++) { printf("\nKey in the [%d][%d]) value",i+1,j+1); scanf("%d",&arr[i][j]); } } for(i=0;i<4;i++) { for(j=0,f=0;j<4;j++) { if(i!=j&&f==0) continue; a=arr[i][j]; b=arr[j][i]; arr[i][j]=b; arr[j][i]=a; f=1; } } for(i=0;i<4;i++) { for(j=0;j<4;j++) printf("%d ",arr[j][i]); printf("\n"); } }


If f(x)=6x -4, what is f(x) when x = 8?

f(x) =6x-4 f(x) = 6(8)-4 f(x) =48-4 f(x) =44


6. Let j(x) = x^2 − 2x + 4. Evaluate the following.j(a) =j(3)=j(x^2) =j(x + 3) = j(x + h) =?

A.) j(a) = a^2 - 2a + 4 B.) j(3) = (3)^2 - 2(3) + 4 = 9 - 6 + 4 = 7 C.) j(x^2) = (x^2)^2 - 2(x^2) + 4 = x^4 - 2x^3 + 4 D.) j(x+3) = (x + 3)^2 - 2(x + 3) + 4 = x^2 +6x + 9 - 2x - 6 + 4 = x^2 + 4x + 7 E.) j(x+h) = (x + h)^2 - 2(x + h) + 4 = x^2 + 2hx + h^2 - 2x - 2h + 4


What function has a vertex at the origin f(x) (x plus 4)2 f(x) x(x and ndash 4) f(x) (x and ndash 4)(x plus 4) f(x) and ndashx2?

It is f(x) = -x2 or (-x)2, whichever you intended.


What has the author J F X Hoery written?

J. F. X. Hoery has written: 'Banjire wis surut' 'Wuludomba pancal panggung'


Let j(x) = x^2 − 2x + 4. Evaluate the following.(a) j(a)(b) j(3)(c) j(x^2)(d) j(x + 3)(e) j(x + h)?

A.) j(a) = a^2 - 2a + 4 B.) j(3) = (3)^2 - 2(3) + 4 = 9 - 6 + 4 = 7 C.) j(x^2) = (x^2)^2 - 2(x^2) + 4 = x^4 - 2x^3 + 4 D.) j(x+3) = (x + 3)^2 - 2(x + 3) + 4 = x^2 +6x + 9 - 2x - 6 + 4 = x^2 + 4x + 7 E.) j(x+h) = (x + h)^2 - 2(x + h) + 4 = x^2 + 2hx + h^2 - 2x - 2h + 4


Let j(x) = x^2 − 2x + 4. Evaluate the following. (A) j(a). (B) j(3). (C) j(x^2). (D) j(x + 3). (E) j(x + h)?

A.) j(a) = a^2 - 2a + 4 B.) j(3) = (3)^2 - 2(3) + 4 = 9 - 6 + 4 = 7 C.) j(x^2) = (x^2)^2 - 2(x^2) + 4 = x^4 - 2x^3 + 4 D.) j(x+3) = (x + 3)^2 - 2(x + 3) + 4 = x^2 +6x + 9 - 2x - 6 + 4 = x^2 + 4x + 7 E.) j(x+h) = (x + h)^2 - 2(x + h) + 4 = x^2 + 2hx + h^2 - 2x - 2h + 4


How a function is even and odd?

The only way a function can be both even and odd is for it to ignore the input, i.e. for it to be a constant function. e.g. f(x)=4 is both even and odd. An even function is one where f(x)=f(-x), and an odd one is where -f(x)=f(-x). This doesn't make sense. Let's analyze. For a function to be even, f(-x)=f(x). For a function to be odd, f(-x)=-f(x). In this case, f(x)=4, and f(-x)=4. As such, for the first part of the even-odd definition, we have 4=4, which is true, making the function even. However, for the second part of it, we have 4=-4 (f(-x)=4, but -f(x)=-4), which is not true. Therefore constant functions are even because f(-x)=f(x), but not odd because f(-x)!=-f(x).


What is the combinationF(x)x2 and g(x)4-x?

if f(x) = x² and g(x) = 4 - x, then: fg(x) = (4 - x)² = 16 - 8x + x2 gf(x) = 4 - x² (f+g)(x) = x² + 4 - x (f - g)(x) = x² - 4 + x (fg)(x) = 4x² - x³ (f/g)(x) = x²/4 - x (iff x ≠ 4)