answersLogoWhite

0

4 J in the X F?

User Avatar

Anonymous

15y ago
Updated: 4/28/2022

Judges in the X Factor

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

When did J. F. X. O'Brien die?

J. F. X. O'Brien died in 1905.


When was J. F. X. O'Brien born?

J. F. X. O'Brien was born in 1828.


What has the author F X J D'Ambrosio written?

F. X. J. D'Ambrosio has written: 'Prepare or deter?'


Write a program to obtain transpose of a 4 X 4 Matrix in c using functions?

void main() { int arr[4][4]; int i,j,a,b,f; printf("\nInput numbers to 4*4 matrix"); for(i=0;i<4;i++) { for(j=0;j<4;j++) { printf("\nKey in the [%d][%d]) value",i+1,j+1); scanf("%d",&arr[i][j]); } } for(i=0;i<4;i++) { for(j=0,f=0;j<4;j++) { if(i!=j&&f==0) continue; a=arr[i][j]; b=arr[j][i]; arr[i][j]=b; arr[j][i]=a; f=1; } } for(i=0;i<4;i++) { for(j=0;j<4;j++) printf("%d ",arr[j][i]); printf("\n"); } }


If f(x)=6x -4, what is f(x) when x = 8?

f(x) =6x-4 f(x) = 6(8)-4 f(x) =48-4 f(x) =44


6. Let j(x) = x^2 − 2x + 4. Evaluate the following.j(a) =j(3)=j(x^2) =j(x + 3) = j(x + h) =?

A.) j(a) = a^2 - 2a + 4 B.) j(3) = (3)^2 - 2(3) + 4 = 9 - 6 + 4 = 7 C.) j(x^2) = (x^2)^2 - 2(x^2) + 4 = x^4 - 2x^3 + 4 D.) j(x+3) = (x + 3)^2 - 2(x + 3) + 4 = x^2 +6x + 9 - 2x - 6 + 4 = x^2 + 4x + 7 E.) j(x+h) = (x + h)^2 - 2(x + h) + 4 = x^2 + 2hx + h^2 - 2x - 2h + 4


What function has a vertex at the origin f(x) (x plus 4)2 f(x) x(x and ndash 4) f(x) (x and ndash 4)(x plus 4) f(x) and ndashx2?

It is f(x) = -x2 or (-x)2, whichever you intended.


Let j(x) = x^2 − 2x + 4. Evaluate the following.(a) j(a)(b) j(3)(c) j(x^2)(d) j(x + 3)(e) j(x + h)?

A.) j(a) = a^2 - 2a + 4 B.) j(3) = (3)^2 - 2(3) + 4 = 9 - 6 + 4 = 7 C.) j(x^2) = (x^2)^2 - 2(x^2) + 4 = x^4 - 2x^3 + 4 D.) j(x+3) = (x + 3)^2 - 2(x + 3) + 4 = x^2 +6x + 9 - 2x - 6 + 4 = x^2 + 4x + 7 E.) j(x+h) = (x + h)^2 - 2(x + h) + 4 = x^2 + 2hx + h^2 - 2x - 2h + 4


Let j(x) = x^2 − 2x + 4. Evaluate the following. (A) j(a). (B) j(3). (C) j(x^2). (D) j(x + 3). (E) j(x + h)?

A.) j(a) = a^2 - 2a + 4 B.) j(3) = (3)^2 - 2(3) + 4 = 9 - 6 + 4 = 7 C.) j(x^2) = (x^2)^2 - 2(x^2) + 4 = x^4 - 2x^3 + 4 D.) j(x+3) = (x + 3)^2 - 2(x + 3) + 4 = x^2 +6x + 9 - 2x - 6 + 4 = x^2 + 4x + 7 E.) j(x+h) = (x + h)^2 - 2(x + h) + 4 = x^2 + 2hx + h^2 - 2x - 2h + 4


What has the author J F X Hoery written?

J. F. X. Hoery has written: 'Banjire wis surut' 'Wuludomba pancal panggung'


How a function is even and odd?

The only way a function can be both even and odd is for it to ignore the input, i.e. for it to be a constant function. e.g. f(x)=4 is both even and odd. An even function is one where f(x)=f(-x), and an odd one is where -f(x)=f(-x). This doesn't make sense. Let's analyze. For a function to be even, f(-x)=f(x). For a function to be odd, f(-x)=-f(x). In this case, f(x)=4, and f(-x)=4. As such, for the first part of the even-odd definition, we have 4=4, which is true, making the function even. However, for the second part of it, we have 4=-4 (f(-x)=4, but -f(x)=-4), which is not true. Therefore constant functions are even because f(-x)=f(x), but not odd because f(-x)!=-f(x).


What is the combinationF(x)x2 and g(x)4-x?

if f(x) = x² and g(x) = 4 - x, then: fg(x) = (4 - x)² = 16 - 8x + x2 gf(x) = 4 - x² (f+g)(x) = x² + 4 - x (f - g)(x) = x² - 4 + x (fg)(x) = 4x² - x³ (f/g)(x) = x²/4 - x (iff x ≠ 4)