52 Cards in a Pack (Without Jokers)
C+P=26 2C+4P=70 Therefore C=26-P Therefore 2(26-P)+4P=70 Therefore 52-2P+4P=70 Therefore 52+2P=70 Therefore 2P=18 Therefore P=9 Therefore C+9=26 Therefore C=17 There are 17 chickens.
1stColor(139,0,0) 2ndColor(139,139,139) ScaleZ(510) ScaleY(560) ScaleX(920) <p> c(27,224,63) p(10,-23,61) p(10,-20,61) p(10,-20,-61) p(10,-23,-61) </p> <p> c(27,224,63) gr(30) p(10,-20,61) p(10,18,61) p(10,18,57) p(10,-20,57) </p> <p> c(27,224,63) p(10,-10,57) p(10,0,57) p(10,0,-57) p(10,-10,-57) </p> <p> c(0,0,0) gr(30) p(10,-20,57) p(10,-10,57) p(10,-10,36) p(10,-20,36) </p> <p> c(0,0,0) gr(30) p(10,-20,33) p(10,-10,33) p(10,-10,13) p(10,-20,13) </p> <p> c(0,0,0) p(10,-20,10) p(10,-10,10) p(10,-10,-10) p(10,-20,-10) </p> <p> c(0,0,0) gr(30) p(10,-20,-13) p(10,-10,-13) p(10,-10,-34) p(10,-20,-34) </p> <p> c(0,0,0) gr(30) p(10,-20,-37) p(10,-10,-37) p(10,-10,-57) p(10,-20,-57) </p> <p> c(0,0,0) p(10,0,57) p(10,10,57) p(10,10,36) p(10,0,36) </p> <p> c(0,0,0) p(10,0,33) p(10,10,33) p(10,10,13) p(10,0,13) </p> <p> c(0,0,0) p(10,0,10) p(10,10,10) p(10,10,-10) p(10,0,-10) </p> <p> c(0,0,0) p(10,0,-13) p(10,10,-13) p(10,10,-34) p(10,0,-34) </p> <p> c(0,0,0) p(10,0,-37) p(10,10,-37) p(10,10,-57) p(10,0,-57) </p> <p> c(27,224,63) gr(30) p(10,-20,36) p(10,-10,36) p(10,-10,33) p(10,-20,33) </p> <p> c(27,224,63) p(10,-20,13) p(10,-10,13) p(10,-10,10) p(10,-20,10) </p> <p> c(27,224,63) p(10,-20,-10) p(10,-10,-10) p(10,-10,-13) p(10,-20,-13) </p> <p> c(27,224,63) gr(30) p(10,-20,-34) p(10,-10,-34) p(10,-10,-37) p(10,-20,-37) </p> <p> c(27,224,63) p(10,0,36) p(10,10,36) p(10,10,33) p(10,0,33) </p> <p> c(27,224,63) p(10,0,13) p(10,10,13) p(10,10,10) p(10,0,10) </p> <p> c(27,224,63) p(10,0,-10) p(10,10,-10) p(10,10,-13) p(10,0,-13) </p> <p> c(27,224,63) p(10,0,-34) p(10,10,-34) p(10,10,-37) p(10,0,-37) </p> <p> c(27,224,63) gr(30) p(10,-20,-57) p(10,18,-57) p(10,18,-61) p(10,-20,-61) </p> <p> c(27,224,63) p(10,18,-44) p(10,23,-47) p(10,23,-61) p(10,18,-61) </p> <p> c(27,224,63) p(10,10,57) p(10,18,57) p(10,18,-57) p(10,10,-57) </p> <p> c(27,224,63) p(10,18,44) p(10,23,47) p(10,23,61) p(10,18,61) </p> <p> c(27,224,63) p(10,18,35) p(10,23,33) p(10,23,-33) p(10,18,-35) </p> // Mirror of the 26 polygons above along the X axis: <p> c(27,224,63) p(-10,-23,61) p(-10,-20,61) p(-10,-20,-61) p(-10,-23,-61) </p> <p> c(27,224,63) p(-10,-20,61) p(-10,18,61) p(-10,18,57) p(-10,-20,57) </p> <p> c(27,224,63) p(-10,-10,57) p(-10,0,57) p(-10,0,-57) p(-10,-10,-57) </p> <p> c(0,0,0) gr(30) p(-10,-20,57) p(-10,-10,57) p(-10,-10,36) p(-10,-20,36) </p> <p> c(0,0,0) gr(30) p(-10,-20,33) p(-10,-10,33) p(-10,-10,13) p(-10,-20,13) </p> <p> c(0,0,0) p(-10,-20,10) p(-10,-10,10) p(-10,-10,-10) p(-10,-20,-10) </p> <p> c(0,0,0) gr(30) p(-10,-20,-13) p(-10,-10,-13) p(-10,-10,-34) p(-10,-20,-34) </p> <p> c(0,0,0) gr(30) p(-10,-20,-37) p(-10,-10,-37) p(-10,-10,-57) p(-10,-20,-57) </p> <p> c(0,0,0) p(-10,0,57) p(-10,10,57) p(-10,10,36) p(-10,0,36) </p> <p> c(0,0,0) p(-10,0,33) p(-10,10,33) p(-10,10,13) p(-10,0,13) </p> <p> c(0,0,0) p(-10,0,10) p(-10,10,10) p(-10,10,-10) p(-10,0,-10) </p> <p> c(0,0,0) p(-10,0,-13) p(-10,10,-13) p(-10,10,-34) p(-10,0,-34) </p> <p> c(0,0,0) gr(30) p(-10,0,-37) p(-10,10,-37) p(-10,10,-57) p(-10,0,-57) </p> <p> c(27,224,63) p(-10,-20,36) p(-10,-10,36) p(-10,-10,33) p(-10,-20,33) </p> <p> c(27,224,63) p(-10,-20,13) p(-10,-10,13) p(-10,-10,10) p(-10,-20,10) </p> <p> c(27,224,63) p(-10,-20,-10) p(-10,-10,-10) p(-10,-10,-13) p(-10,-20,-13) </p> <p> c(27,224,63) p(-10,-20,-34) p(-10,-10,-34) p(-10,-10,-37) p(-10,-20,-37) </p> <p> c(27,224,63) p(-10,0,36) p(-10,10,36) p(-10,10,33) p(-10,0,33) </p> <p> c(27,224,63) p(-10,0,13) p(-10,10,13) p(-10,10,10) p(-10,0,10) </p> <p> c(27,224,63) p(-10,0,-10) p(-10,10,-10) p(-10,10,-13) p(-10,0,-13) </p> <p> c(27,224,63) p(-10,0,-34) p(-10,10,-34) p(-10,10,-37) p(-10,0,-37) </p> <p> c(27,224,63) p(-10,-20,-57) p(-10,18,-57) p(-10,18,-61) p(-10,-20,-61) </p> <p> c(27,224,63) p(-10,18,-44) p(-10,23,-47) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) p(-10,10,57) p(-10,18,57) p(-10,18,-57) p(-10,10,-57) </p> <p> c(27,224,63) p(-10,18,44) p(-10,23,47) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(-10,18,35) p(-10,23,33) p(-10,23,-33) p(-10,18,-35) </p> // End of mirror <p> c(27,224,63) p(10,18,-61) p(10,23,-61) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) lightB p(10,12,-61) p(10,18,-61) p(7,18,-61) p(7,12,-61) </p> <p> c(27,224,63) lightB p(-10,12,-61) p(-10,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(7,12,-61) p(7,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(10,10,-61) p(10,12,-61) p(-10,12,-61) p(-10,10,-61) </p> <p> c(0,0,0) p(7,0,-61) p(7,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,10,-61) p(7,10,-61) p(7,0,-61) </p> <p> c(27,224,63) p(-10,0,-61) p(-10,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,-10,-61) p(-10,-10,-61) p(-10,0,-61) </p> <p> c(0,0,0) p(7,-19,-61) p(7,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-19,-61) p(10,-10,-61) p(7,-10,-61) p(7,-19,-61) </p> <p> c(27,224,63) p(-10,-19,-61) p(-10,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-23,-61) p(10,-19,-61) p(-10,-19,-61) p(-10,-23,-61) </p> // Mirror of the 9 polygons above along the Z axis: <p> c(27,224,63) p(10,10,61) p(10,12,61) p(-10,12,61) p(-10,10,61) </p> <p> c(0,0,0) p(7,0,61) p(7,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,10,61) p(7,10,61) p(7,0,61) </p> <p> c(27,224,63) p(-10,0,61) p(-10,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,-10,61) p(-10,-10,61) p(-10,0,61) </p> <p> c(0,0,0) p(7,-19,61) p(7,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-19,61) p(10,-10,61) p(7,-10,61) p(7,-19,61) </p> <p> c(27,224,63) p(-10,-19,61) p(-10,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-23,61) p(10,-19,61) p(-10,-19,61) p(-10,-23,61) </p> // End of mirror <p> c(27,224,63) p(10,12,61) p(10,18,61) p(7,18,61) p(7,12,61) </p> <p> c(27,224,63) p(-10,12,61) p(-10,18,61) p(-7,18,61) p(-7,12,61) </p> <p> c(255,255,255) lightF p(2,16,61) p(2,18,61) p(7,18,61) p(7,16,61) </p> <p> c(27,224,63) lightF p(-2,16,61) p(-2,18,61) p(-7,18,61) p(-7,16,61) </p> <p> c(27,224,63) p(7,12,61) p(7,16,61) p(-7,16,61) p(-7,12,61) </p> <p> c(27,224,63) p(10,18,61) p(10,23,61) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(2,16,61) p(2,18,61) p(-2,18,61) p(-2,16,61) </p> <p> c(27,224,63) p(-10,-23,61) p(10,-23,61) p(10,-23,-61) p(-10,-23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,23,-33) p(10,23,-33) </p> <p> c(130,130,130) gr(30) p(10,23,-33) p(-10,23,-33) p(-10,18,-33) p(10,18,-33) </p> <p> c(130,130,130) gr(30) p(10,18,-33) p(-10,18,-33) p(-10,18,-44) p(10,18,-44) </p> <p> c(130,130,130) gr(30) p(10,18,-44) p(-10,18,-44) p(-10,23,-47) p(10,23,-47) </p> // Mirror of the 3 polygons above along the Z axis: <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,18,35) p(10,18,35) </p> <p> c(130,130,130) gr(30) p(10,18,35) p(-10,18,35) p(-10,18,44) p(10,18,44) </p> <p> c(130,130,130) gr(30) p(10,18,44) p(-10,18,44) p(-10,23,47) p(10,23,47) </p> // End of mirror <p> c(130,130,130) gr(30) p(10,23,-47) p(-10,23,-47) p(-10,23,-61) p(10,23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,47) p(-10,23,47) p(-10,23,61) p(10,23,61) </p> physics(50,12,50,62,50,0,0,90,10,12,12,94,50,56,4,8330) handling(76) gwgr(40) rims(140,140,140,18,10) w(-8,20,40,11,35,20) w(8,20,40,11,-35,20) gwgr(40) rims(140,140,140,18,10) w(-8,20,-40,0,35,20) w(8,20,-40,0,-35,20) stat(120,104,129,165,162)
52
x + 3x = 52 4x = 52 x = 13 Mrs. Computer is 39 and Mousy is 13. To solve this problem I gave each of the people a representative letter. Mrs Computer = C and Mousy = M The first statment "Mrs Computer is 3 times older that her daughter Mousy" translates to this C=M*3 The second statement "the sum of their ages is 52" translates to this M+C=52 Because we know that C=M*3 I can translate "How old is Mousy" to this equation M+3*M=52 which simplifies to this 4*M=52 then further to this M=52/4
Area = square root of {s1(s1-a)(s1-b)(s1-p)} + square root of {s2(s2-c)(s2-d)(s2-p)} where a,b,c and d are the four sides of the quadrilateral, p is the diagonal separating the sides a,b from c,d, and s1 = (a+b+p)/2 and s2 = (c+d+p)/2
52 cards in a deck, without jokers.54 with jokers
52 cards in a pack
52 cards in a pack
52 carti in pachetul de carti fara jokeri.
52 Cards in a Pack Without Jokers
Answer to 52 wk on a pIt stands for 52 White Keys on a Piano!
52 cards in a pack (without Jokers)
P(Heart or Club) = P(H) + P(C) = 13/52 + 13/52 = 26/52 = 1/2 = 0.5.
P(Heart) = 13/52 P(King) = 4/52 P(Heart and a king)= 1/52 P(Heart or a king)=P(Heart) + P(King) - P(Heart and a king) =13/52+4/52-1/52 =16/52
hey tis is sandy, it means 52 cuts in piano
aces in card=4 P(Aces)=4/52 clubs are= 13 P(Club) = 13/52 P(An Ace or a Club)= P(Ace). P (club)= 4/52*13/52=1/52
Belle Boyd, a Confederate spy during the American Civil War, married twice. Her first marriage was to John Hammond in 1864, but it ended in divorce after just a few months. Subsequently, she married a British soldier, Samuel S. D. D. D. A. P. B. P. C. A. P. D. C. P. D. P. C. P. C. P. D. C. P. D. P. C. P. D. C. P. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P. D. C. P