This deals with ratios and proportions. ⊱ ────── ✯ ────── ⊰ A : B = 2 : 3 B : C = 4 : 5. Now, to find A : B : C, we need to make the value of B equal in A : B ratio and B : C ratio. Here, Value of B in A : B ratio is 3; and B : C ratio is 4. LCM of 3 and 4 is 12. Therefore, we multiply 4 to the first ratio and 3 to the second ratio. A : B = 2 × 4 : 3 × 4 A : B = 8 : 12 Also, B : C = 4 × 3 : 5 × 3 B : C = 12 : 15 Now, we can combine A : B and B : C. A : B : C = 8 : 12 : 15.
What is 4 C B
0
B
On a scale for GPA where A =4,B=3,C=2, and D=1 then GPA = (4 x2) + (3 x 3) + (2x2) all divided by 7 to get average GPA = 3.0
This is a proof that uses the cosine rule and Pythagoras' theorem. As on any triangle with c being the opposite side of θ and a and b are the other sides: c^2=a^2+b^2-2abcosθ We can rearrange this for θ: θ=arccos[(a^2+b^2-c^2)/(2ab)] On a right-angle triangle cosθ=a/h. We can therefore construct a right-angle triangle with θ being one of the angles, the adjacent side being a^2+b^2-c^2 and the hypotenuse being 2ab. As the formula for the area of a triangle is also absinθ/2, when a and b being two sides and θ the angle between them, the opposite side of θ on the right-angle triangle we have constructed is 4A, with A being the area of the original triangle, as it is 2absinθ. Therefore, according to Pythagoras' theorem: (2ab)^2=(a^2+b^2-c^2)^2+(4A)^2 4a^2*b^2=(a^2+b^2-c^2)^2+16A^2 16A^2=4a^2*b^2-(a^2+b^2-c^2)^2 This is where it will start to get messy: 16A^2=4a^2*b^2-(a^2+b^2-c^2)(a^2+b^2-c^2) =4a^2*b^2-(a^4+a^2*b^2-a^2*c^2+a^2*b^2+b^4-b^2*c^2- a^2*c^2-b^2*c^2+c^4) =4a^2*b^2-(a^4+2a^2*b^2-2a^2*c^2+b^4-2b^2*c^2+c^4) =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.1) We will now see: (a+b+c)(-a+b+c)(a-b+c)(a+b-c) =(-a^2+ab+ac-ab+b^2+bc-ac+bc+c^2)(a^2+ab-ac-ab-b^2+bc+ac+bc-c^2) =(-a^2+b^2+2bc+c^2)(a^2-b^2+2bc-c^2) =-a^4+a^2*b^2-2a^2*bc+a^2*c^2+a^2*b^2-b^4+2b^3*c-b^2*c^2+2a^2*bc-2b^3*c+(2bc)^2-2bc^3+a^2*c^2-b^2*c^2+2bc^3-c^4 =-a^4+2a^2*b^2+2a^2*c^2-b^4+(2bc)^2-c^4-2b^2*c^2 =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.2) And now that we know that Eq.1=Eq.2, we can make Eq.1=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) Therefore: 16A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)/16 =[(a+b+c)/2][(-a+b+c)/2][(a-b+c)/2][(a+b-c)/2] And so if we let s=(a+b+c)/2 A^2=s(s-a)(s-b)(s-c)
a+(b+c)=b+(a+c) 2+(7+4)=7+(2+4)
This deals with ratios and proportions. ⊱ ────── ✯ ────── ⊰ A : B = 2 : 3 B : C = 4 : 5. Now, to find A : B : C, we need to make the value of B equal in A : B ratio and B : C ratio. Here, Value of B in A : B ratio is 3; and B : C ratio is 4. LCM of 3 and 4 is 12. Therefore, we multiply 4 to the first ratio and 3 to the second ratio. A : B = 2 × 4 : 3 × 4 A : B = 8 : 12 Also, B : C = 4 × 3 : 5 × 3 B : C = 12 : 15 Now, we can combine A : B and B : C. A : B : C = 8 : 12 : 15.
Well, isn't that just a happy little math problem! If A is less than B and B plus C equals 10, then it must be true that A plus C is less than 10. Just remember, in the world of numbers, everything adds up beautifully in the end.
2.83 based on A=4, B=3, C=2, D=1. If each class has the exactly the same number of credits, then this would be a B+.
x=(-b+sqrt(b^2-4*a*c))/(2a) and (-b-sqrt(b^2-4*a*c))/(2a) (This is called the quadratic formula)
Suppose sqrt(A) = B ie the square with sides B has an area of A and its perimeter is 4*B. Now consider a rectangle with sides C and D whose area is A. So C*D = A = B*B so that D = B*B/C Perimeter of the rectangle = 2*(C+D) = 2*C + 2*D = 2*C +2*B*B/C Now consider (C-B)2 which, because it is a square, is always >= 0 ie C*C + B*B - 2*B*C >= 0 ie C*C + B*B >= 2*B*C Multiply both sides by 2/C (which is >0 so the inequality remains the same) 2*C + 2*B*B/C >= 4*B But, as shown above, the left hand side is perimeter of the rectangle, while the right hand side is the perimeter of the square.
Your example is confusing -- while 2^4 = 4^2, in general it is false that x^y=y^x, so not sure what you mean by "converting powers." A relevant rule is that (a^b)^c = a^(bc) (power of a power is product of powers) If a=2, b=2, and c=2 then a^b = 2-squared = 4 and the formula gives 4^2 = 2^(2*2) which is true. Also (a^b)*(a^c) = a^(b+c) (multiply numbers, add powers) and (a^b)/(a^c) = a^(b-c) (divide numbers, subtract powers)
Numbers are a, b and c; b = a + 2, c = a + 4. Find a such that a = b + c, ie a = (a + 2) + (a + 4) so a = 2a + 6 making a = -6, b = -4 and c = -2
Let's take our four tests and call them A, B, C and D, in order from worst to best. We're told: (A + B + C + D) / 4 = 85.5 (B + C + D) / 3 = 87 A = B We can say then: (2B + C + D) / 4 = 85.5 Or: B/2 + C/4 + D/4 = 85.5 And: B / 3 + C / 3 + D / 3 = 87 Or: B/2 + C/2 + D/2 = 3(87 / 2) Now we can combine those two equations to eliminate B. We'll subtract the terms of the first one from the terms of the second one: (B/2 - B/2) + (C/2 - C/4) + (D/2 - D/4) = 3(87 / 2) - 85.5 (2C - C) / 4 + (2D - D) / 4 = 45 (C + D) / 4 = 45 (C + D) / 2 = 90 So the average of the two best tests is 90%
1. The y-intercept of a parabola with equation y = ax^2 + bx + c is c. So, c = -22. The vertex is (x, y) = (-4, 2), where x = - b/2ax = - b/2a-4 = - b/2a(-4)(-2a) = (-b/2a)(-2a)8a = bSo we have:y = ax^2 + bx + c (substitute what you know: 2 for y, -4 for x, 8a for b, and -2 for c)2 = a(-4)^2 + (8a)(-4) + (-2)2 = 16a - 32a - 22 = - 16a - 2 (add 2 to both sides)4 = -16a (divide by -16 to both sides)-1/4 = aSince b = 8a, then b = 8(-1/4) = -2 Since a = -1/4, b = -2, and c = -2, then we can write the equation of the parabola asy = (-1/4)x^2 - 2x - 2.
The answer is b.