approaches but does not cross
asymptote
no
Asymptote
It is an asymptote.
A line that a graph gets increasingly closer to but never touches is known as an asymptote. Asymptotes can be horizontal, vertical, or oblique, depending on the behavior of the graph as it approaches infinity or a particular point. For example, the horizontal line (y = 0) serves as an asymptote for the function (y = \frac{1}{x}) as (x) approaches infinity.
asymptote
The asymptote is a line where the function is not valid - i.e the function does not cross this line, in fact it does not even reach this line, so you cannot check the value of the function on it's asymptote.However, to get an idea of the function you should look at it's behavior as it approaches each side of the asymptote.
no
It can.
No. The fact that it is an asymptote implies that the value is never attained. The graph can me made to go as close as you like to the asymptote but it can ever ever take the asymptotic value.
Asymptote
a line that a graph approaches as you move away from the origin
No. If it cuts a graph it is not an asymptote.
It is an asymptote.
The graph of an exponential function f(x) = bx approaches, but does not cross the x-axis. The x-axis is a horizontal asymptote.
A line that a graph gets increasingly closer to but never touches is known as an asymptote. Asymptotes can be horizontal, vertical, or oblique, depending on the behavior of the graph as it approaches infinity or a particular point. For example, the horizontal line (y = 0) serves as an asymptote for the function (y = \frac{1}{x}) as (x) approaches infinity.
There is nothing in the definition of "asymptote" that forbids a graph to cross its asymptote. The only requirement for a line to be an asymptote is that if one of the coordinates gets larger and larger, the graph gets closer and closer to the asymptote. The "closer and closer" part is defined via limits.