Yes. A function is a rule to assign a value based on some other value; you can make the function equal to a constant for all values of a variable "x", or you can make it equal to a few values. Commonly used functions of this type include the integer function (take the integer part of a number), which, if you consider a finite domain (for example, all numbers from 0 to 10), has an infinite number of values in the domain, but only a few specific values in its range; and the sign function.
Chat with our AI personalities
No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.
A finite set has a finite number of elements, an infinite set has infinitely many.
In mathematics, a finite set is a set that has a finite number of elements. For example, (2,4,6,8,10) is a finite set with five elements. The number of elements of a finite set is a natural number (non-negative integer), and is called the cardinality of the set. A set that is not finite is called infinite. For example, the set of all positive integers is infinite: (1,2,3,4, . . .)
The number of hairs on your head is finite. Each person has a specific number of hair follicles on their scalp, which determines the maximum number of hairs that can grow. While individual hairs may fall out and new ones may grow in their place, the total number of hair follicles is limited, making the number of hairs on your head finite.
A function may have a finite number of discontinuities and still be integrable according to Riemann (i.e., the Riemann integral exists); it may even have a countable infinite number of discontinuities and still be integrable according to Lebesgue. Any function with a finite amount of discontinuities (that satisfies other requirements, such as being bounded) can serve as an example; an example of a specific function would be the function defined as: f(x) = 1, for x < 10 f(x) = 2, otherwise