answersLogoWhite

0

It is true that diagonalizable matrices A and B commute if and only if they are simultaneously diagonalizable. This result can be found in standard texts (e.g. Horn and Johnson, Matrix Analysis, 1999, Theorem 1.3.12.)

One direction of the if and only if proof is straightforward, but the other direction is more technical:

If A and B are diagonalizable matrices of the same order, and have the same eigenvectors, then, without loss of generality, we can write their diagonalizations as A = VDV-1 and B = VLV-1, where V is the matrix composed of the basis eigenvectors of A and B, and D and L are diagonal matrices with the corresponding eigenvalues of A and B as their diagonal elements. Since diagonal matrices commute, DL = LD. So, AB = VDV-1VLV-1 = VDLV-1 = VLDV-1 = VLV-1VDV-1 = BA.

The reverse is harder to prove, but one online proof is given below as a related link. The proof in Horn and Johnson is clear and concise.

Consider the particular case that B is the identity, I. If A = VDV-1 is a diagonalization of A, then I = VIV-1 is a diagonalization of I; i.e., A and I have the same eigenvectors.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

RossRoss
Every question is just a happy little opportunity.
Chat with Ross
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: Do commutative matrices have the same eigenvectors?
Write your answer...
Submit
Still have questions?
magnify glass
imp