The main measures of central tendency are the mean, the median and the mode. For a normal distribution, they are identical. For other distributions, they can vary quite a bit. Since the mode is the most-frequent element of the distribution, you can have more than one mode, which is not particularly helpful in most probability computations. The median is the level which 50% of the values are below (also known as the 50th percentile). The mean is the sum of the values divided by the number of values.
Between the median and the mode, the median is less variable, and so is generally a better measure of overall central tendency. However, when computing statistical probabilities, the mean is often more useful in the mathematical formulas, which are generally oriented toward computing the probability that a given value is different from a different value.
Chat with our AI personalities
There are more than three measures. Some are better than others in some situations but not as good in other situations.
The arithmatic mean is not a best measure for central tendency.. It is because any outliers in the dataset would affect its value thus it is considered not a robust measure.. The mode or median however would be better to measure central tendency since outliers wont affect it value.. Consider this example : Arithmatic mean dan mode from 1, 5, 5, 9 is 5.. If we add 30 to the dataset then the arithmatic mean will be 10 but the mode will still same.. Mode is more robust than arithmatic mean..
Yes. Central tendency is the way data clusters around a value. Even if the distribution of the value is skewed, the median would be the best indicator of central tendency because of the way the data is clustered.
In Statistics, the measure of spread tells us how much adata sample is spread out or scattered. We can use the range and the interquartile range (IQR) to measure the spread of a sample. Measures of spread together with measures of location (or central tendency) are important for identifying key features of a sample to better understand the population from which the sample comes from. The range is the difference between a high number and the low number in the samples presented. It represents how spread out or scattered a set of data. It is also known as measures of dispersion or measures of spread.
None of them is "more accurate". They are answers to two different questions.