Yes, it has one.
1
Equilateral Triangles (3 lines of symmetry)Rectangles (at least 2 lines of symmetry)Squares (4 lines of symmetry)Rhombuses (at least 2 lines of symmetry)Any regular polygon (at least 5 lines of symmetry)
Most parallelograms do not have any lines of symmetry. The only parallelograms that can have lines of symmetry are squares, rectangles, and rhombuses.
I don't think a human foot has any lines of symmetry. I don't know about other species.
A circle has an infinite number of lines of symmetry, corresponding to any of its diameter lines, to any arbitrary level of division (degrees, minutes, seconds).
1
1 that is all
one
1
A decagon need not have any lines of symmetry. It can also have 1 or 10 lines of symmetry.
A rectangle has 2 lines of symmetry whereas a square has 4 lines of symmetry
Yes, there are infinite lines of symmetry in a circle.
Equilateral Triangles (3 lines of symmetry)Rectangles (at least 2 lines of symmetry)Squares (4 lines of symmetry)Rhombuses (at least 2 lines of symmetry)Any regular polygon (at least 5 lines of symmetry)
Most parallelograms do not have any lines of symmetry. The only parallelograms that can have lines of symmetry are squares, rectangles, and rhombuses.
12 * * * * * A dodecagon need not have any lines of symmetry. It can have 1, 2, 4 or 12 lines of symmetry.
A square by definition has lines of symmetry. Therefore a square cannot be drawn without any lines of symmetry.
An arrow typically exhibits reflectional symmetry, also known as mirror symmetry. This means that if you were to draw a line down the center of the arrow, the two halves would be mirror images of each other. Arrows do not usually have rotational symmetry, as rotating them around a point would not result in the same shape.