Multiplication and Division
Round the answer to the same number of significant figures (sig figs) as the measurement with the fewest sig figs in the problem.
34.9cm x 4.7cm = 164.03cm2 = 160cm2 (rounded to two sig figs)
271.0g/99.8cm3 = 2.71543g/cm3 = 2.715 (rounded to four sig figs)
Addition and Subtraction
Round the answer to the fewest decimal places as the measurement with the fewest decimal places.
9.45kg + 8.329kg = 17.78kg (rounded to two decimal places)
For multiplication/division, use the least number of significant figures (ie 6.24 * 2.0 = 12). For addition subtraction, use the least specific number (ie 28.24 - 2.1 = 26.1)
The accuracy of the answer is limited to the LEAST significant figures of the input. So if two measured quantities are multiplied or divided, one of which is accurate to only two significant figures, and other to six significant figures, the answer is only accurate to two significant figures. HOWEVER: use all the figures you have for the calculation, and then round your answer to two significant figures. Also, however, remember that if you are multiplying by an actual exact number, as in doubling, the significant figures of that 2 is unlimited, so the answer is only limited by the significant figures of the number you are doubling.
2 of them.
Your calculator will produce 10, but only the first 5 mean anything.
There are two significant figures in 0.025.
significant figures in the original numbers used in the calculation. This means the final answer should be rounded to the same number of significant figures as the number with the least amount of significant figures.
addition multiplication division subtraction
For multiplication/division, use the least number of significant figures (ie 6.24 * 2.0 = 12). For addition subtraction, use the least specific number (ie 28.24 - 2.1 = 26.1)
When performing calculations involving significant figures in both multiplication and addition operations, ensure accuracy by following these steps: For multiplication and division, the result should have the same number of significant figures as the measurement with the fewest significant figures. For addition and subtraction, the result should be rounded to the same decimal place as the measurement with the fewest decimal places. By applying these rules, you can maintain the accuracy of your calculations involving significant figures.
To determine the correct number of significant figures in a calculation involving both addition and multiplication, follow these steps: Perform the addition or subtraction operation first, and count the number of decimal places in the result. For multiplication or division, count the number of significant figures in each number being multiplied or divided. The final answer should have the same number of significant figures as the number with the least number of significant figures in the calculation.
The least number of significant figures in any number of the problem determines the number of significant figures in the answer.
It depends on the operation - for multiplication, the ammount of significant figures is the same as the multiple that has the least. Same for division. For subtraction and addition, the significant figures are decided by the least ammount of spaces past the decimal in the answer. For example, 30.7+2.111111111 would be 30.8
The result is 457,50 - with two significant figures.
The accuracy of the answer is limited to the LEAST significant figures of the input. So if two measured quantities are multiplied or divided, one of which is accurate to only two significant figures, and other to six significant figures, the answer is only accurate to two significant figures. HOWEVER: use all the figures you have for the calculation, and then round your answer to two significant figures. Also, however, remember that if you are multiplying by an actual exact number, as in doubling, the significant figures of that 2 is unlimited, so the answer is only limited by the significant figures of the number you are doubling.
When performing calculations involving addition, the result should be rounded to the same decimal place as the least precise number being added. For multiplication and division, the result should have the same number of significant figures as the least precise number in the calculation.
When adding or multiplying numbers, the result should have the same number of decimal places as the number with the fewest decimal places. For addition, the result should have the same number of significant figures as the number with the fewest significant figures. For multiplication, the result should have the same number of significant figures as the number with the fewest significant figures.
When performing mathematical operations with significant figures, the result should be rounded to the least number of decimal places in the original numbers. Addition and subtraction should be rounded to the least number of decimal places, while multiplication and division should be rounded to the least number of significant figures.