0
Wiki User
That means you must take the derivative of the derivative. In this case, you must use the product rule.
y = 6x sin x
y'= 6[x (sin x)' + (x)' sin x]
= 6[x cos x + sin x]
y'' = 6[x (cos x)' + (x)' cos x + cos x]
= 6[x (-sin x) + cos x + cos x]
= 6[-x sin x + 2 cos x]
5
y=6x-16 y=-2x+8
y=9
-3
24
x=1.5 and y=6x so y=6(1.5) y=9
f(x) = 1/x except where x = 0.
-6x + y = 9 (+6x) -> y = 6x + 9
y=sinx y=cosxsinx=cosx=>sinx/cosx=1=>tanx=1=>x=45oie.. y=sin45=cos45y=1/(square root of 2)
-1
6x-y=-14 2x-3y=6
-36
It is 0.