They are congruent when they have 3 identical dimensions and 3 identical interior angles.
Congruent-SSS
4,8,12
Answer: Since you are looking for the scale factor of ABC to DEF the answer is 8 because DEF is 8 times larger than ABC.
Yes- but not all isosceles triangles are right triangles. Isosceles means that two sides are the same length, and two angles are the same.
ABC
A triangle if not found congruent by CPCTC as CPCTC only applies to triangles proven to be congruent. If triangle ABC is congruent to triangle DEF because they have the same side lengths (SSS) then we know Angle ABC (angle B) is congruent to Angle DEF (Angle E)
Transitive
Oh, dude, if ABC DEF, then congruences like angle A is congruent to angle D, angle B is congruent to angle E, and side AC is congruent to side DF would be true by CPCTC. It's like a matching game, but with triangles and math rules. So, just remember CPCTC - Corresponding Parts of Congruent Triangles are Congruent!
True, ABC is congruent to PQR by the transitive property.
If the sides AB, BC and CA of triangle ABC correspond to the sides DE, EF and FD of triangle DEF, then the two triangles are congruent if:AB = DE, BC = EF and CA = FD (SSS)AB = DE, BC = EF and angle ABC = angle DEF (SAS)AB = DE, angle ABC = angle DEF, angle BCA = angle EFD (ASA)If the triangles are right angled at A and D so that BC and EF are hypotenuses, then the triangles are congruent ifBC = EF and AB = DE (RHS)BC = EF and angle ABC = angle DEF (RHA).
B e
Congruent-SSS
Nope Congruent - SSS Apex. You're welcome.
Angle "A" is congruent to Angle "D"
True [APEX]
Yes, triangles ABC and DEF are congruent if all corresponding sides and angles are equal. The congruence postulate that applies in this case could be the Side-Angle-Side (SAS) postulate, which states that if two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the triangles are congruent. Other applicable postulates include Side-Side-Side (SSS) and Angle-Angle-Side (AAS), depending on the known measurements.
Yes, triangles ABC and DEF can be considered equal (congruent) if they meet specific criteria, such as having all corresponding sides and angles equal. The postulate that applies in this case is the Side-Side-Side (SSS) Congruence Postulate, which states that if three sides of one triangle are equal to three sides of another triangle, the triangles are congruent. Other applicable postulates include Side-Angle-Side (SAS) and Angle-Side-Angle (ASA), depending on the given information.