answersLogoWhite

0

that is not nessasary

User Avatar

Erin Bode

Lvl 10
3y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: How do you do P?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is 10 P?

P + P + P + P + P + P + P + P + P + P


Need for madness codee?

1stColor(139,0,0) 2ndColor(139,139,139) ScaleZ(510) ScaleY(560) ScaleX(920) <p> c(27,224,63) p(10,-23,61) p(10,-20,61) p(10,-20,-61) p(10,-23,-61) </p> <p> c(27,224,63) gr(30) p(10,-20,61) p(10,18,61) p(10,18,57) p(10,-20,57) </p> <p> c(27,224,63) p(10,-10,57) p(10,0,57) p(10,0,-57) p(10,-10,-57) </p> <p> c(0,0,0) gr(30) p(10,-20,57) p(10,-10,57) p(10,-10,36) p(10,-20,36) </p> <p> c(0,0,0) gr(30) p(10,-20,33) p(10,-10,33) p(10,-10,13) p(10,-20,13) </p> <p> c(0,0,0) p(10,-20,10) p(10,-10,10) p(10,-10,-10) p(10,-20,-10) </p> <p> c(0,0,0) gr(30) p(10,-20,-13) p(10,-10,-13) p(10,-10,-34) p(10,-20,-34) </p> <p> c(0,0,0) gr(30) p(10,-20,-37) p(10,-10,-37) p(10,-10,-57) p(10,-20,-57) </p> <p> c(0,0,0) p(10,0,57) p(10,10,57) p(10,10,36) p(10,0,36) </p> <p> c(0,0,0) p(10,0,33) p(10,10,33) p(10,10,13) p(10,0,13) </p> <p> c(0,0,0) p(10,0,10) p(10,10,10) p(10,10,-10) p(10,0,-10) </p> <p> c(0,0,0) p(10,0,-13) p(10,10,-13) p(10,10,-34) p(10,0,-34) </p> <p> c(0,0,0) p(10,0,-37) p(10,10,-37) p(10,10,-57) p(10,0,-57) </p> <p> c(27,224,63) gr(30) p(10,-20,36) p(10,-10,36) p(10,-10,33) p(10,-20,33) </p> <p> c(27,224,63) p(10,-20,13) p(10,-10,13) p(10,-10,10) p(10,-20,10) </p> <p> c(27,224,63) p(10,-20,-10) p(10,-10,-10) p(10,-10,-13) p(10,-20,-13) </p> <p> c(27,224,63) gr(30) p(10,-20,-34) p(10,-10,-34) p(10,-10,-37) p(10,-20,-37) </p> <p> c(27,224,63) p(10,0,36) p(10,10,36) p(10,10,33) p(10,0,33) </p> <p> c(27,224,63) p(10,0,13) p(10,10,13) p(10,10,10) p(10,0,10) </p> <p> c(27,224,63) p(10,0,-10) p(10,10,-10) p(10,10,-13) p(10,0,-13) </p> <p> c(27,224,63) p(10,0,-34) p(10,10,-34) p(10,10,-37) p(10,0,-37) </p> <p> c(27,224,63) gr(30) p(10,-20,-57) p(10,18,-57) p(10,18,-61) p(10,-20,-61) </p> <p> c(27,224,63) p(10,18,-44) p(10,23,-47) p(10,23,-61) p(10,18,-61) </p> <p> c(27,224,63) p(10,10,57) p(10,18,57) p(10,18,-57) p(10,10,-57) </p> <p> c(27,224,63) p(10,18,44) p(10,23,47) p(10,23,61) p(10,18,61) </p> <p> c(27,224,63) p(10,18,35) p(10,23,33) p(10,23,-33) p(10,18,-35) </p> // Mirror of the 26 polygons above along the X axis: <p> c(27,224,63) p(-10,-23,61) p(-10,-20,61) p(-10,-20,-61) p(-10,-23,-61) </p> <p> c(27,224,63) p(-10,-20,61) p(-10,18,61) p(-10,18,57) p(-10,-20,57) </p> <p> c(27,224,63) p(-10,-10,57) p(-10,0,57) p(-10,0,-57) p(-10,-10,-57) </p> <p> c(0,0,0) gr(30) p(-10,-20,57) p(-10,-10,57) p(-10,-10,36) p(-10,-20,36) </p> <p> c(0,0,0) gr(30) p(-10,-20,33) p(-10,-10,33) p(-10,-10,13) p(-10,-20,13) </p> <p> c(0,0,0) p(-10,-20,10) p(-10,-10,10) p(-10,-10,-10) p(-10,-20,-10) </p> <p> c(0,0,0) gr(30) p(-10,-20,-13) p(-10,-10,-13) p(-10,-10,-34) p(-10,-20,-34) </p> <p> c(0,0,0) gr(30) p(-10,-20,-37) p(-10,-10,-37) p(-10,-10,-57) p(-10,-20,-57) </p> <p> c(0,0,0) p(-10,0,57) p(-10,10,57) p(-10,10,36) p(-10,0,36) </p> <p> c(0,0,0) p(-10,0,33) p(-10,10,33) p(-10,10,13) p(-10,0,13) </p> <p> c(0,0,0) p(-10,0,10) p(-10,10,10) p(-10,10,-10) p(-10,0,-10) </p> <p> c(0,0,0) p(-10,0,-13) p(-10,10,-13) p(-10,10,-34) p(-10,0,-34) </p> <p> c(0,0,0) gr(30) p(-10,0,-37) p(-10,10,-37) p(-10,10,-57) p(-10,0,-57) </p> <p> c(27,224,63) p(-10,-20,36) p(-10,-10,36) p(-10,-10,33) p(-10,-20,33) </p> <p> c(27,224,63) p(-10,-20,13) p(-10,-10,13) p(-10,-10,10) p(-10,-20,10) </p> <p> c(27,224,63) p(-10,-20,-10) p(-10,-10,-10) p(-10,-10,-13) p(-10,-20,-13) </p> <p> c(27,224,63) p(-10,-20,-34) p(-10,-10,-34) p(-10,-10,-37) p(-10,-20,-37) </p> <p> c(27,224,63) p(-10,0,36) p(-10,10,36) p(-10,10,33) p(-10,0,33) </p> <p> c(27,224,63) p(-10,0,13) p(-10,10,13) p(-10,10,10) p(-10,0,10) </p> <p> c(27,224,63) p(-10,0,-10) p(-10,10,-10) p(-10,10,-13) p(-10,0,-13) </p> <p> c(27,224,63) p(-10,0,-34) p(-10,10,-34) p(-10,10,-37) p(-10,0,-37) </p> <p> c(27,224,63) p(-10,-20,-57) p(-10,18,-57) p(-10,18,-61) p(-10,-20,-61) </p> <p> c(27,224,63) p(-10,18,-44) p(-10,23,-47) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) p(-10,10,57) p(-10,18,57) p(-10,18,-57) p(-10,10,-57) </p> <p> c(27,224,63) p(-10,18,44) p(-10,23,47) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(-10,18,35) p(-10,23,33) p(-10,23,-33) p(-10,18,-35) </p> // End of mirror <p> c(27,224,63) p(10,18,-61) p(10,23,-61) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) lightB p(10,12,-61) p(10,18,-61) p(7,18,-61) p(7,12,-61) </p> <p> c(27,224,63) lightB p(-10,12,-61) p(-10,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(7,12,-61) p(7,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(10,10,-61) p(10,12,-61) p(-10,12,-61) p(-10,10,-61) </p> <p> c(0,0,0) p(7,0,-61) p(7,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,10,-61) p(7,10,-61) p(7,0,-61) </p> <p> c(27,224,63) p(-10,0,-61) p(-10,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,-10,-61) p(-10,-10,-61) p(-10,0,-61) </p> <p> c(0,0,0) p(7,-19,-61) p(7,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-19,-61) p(10,-10,-61) p(7,-10,-61) p(7,-19,-61) </p> <p> c(27,224,63) p(-10,-19,-61) p(-10,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-23,-61) p(10,-19,-61) p(-10,-19,-61) p(-10,-23,-61) </p> // Mirror of the 9 polygons above along the Z axis: <p> c(27,224,63) p(10,10,61) p(10,12,61) p(-10,12,61) p(-10,10,61) </p> <p> c(0,0,0) p(7,0,61) p(7,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,10,61) p(7,10,61) p(7,0,61) </p> <p> c(27,224,63) p(-10,0,61) p(-10,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,-10,61) p(-10,-10,61) p(-10,0,61) </p> <p> c(0,0,0) p(7,-19,61) p(7,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-19,61) p(10,-10,61) p(7,-10,61) p(7,-19,61) </p> <p> c(27,224,63) p(-10,-19,61) p(-10,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-23,61) p(10,-19,61) p(-10,-19,61) p(-10,-23,61) </p> // End of mirror <p> c(27,224,63) p(10,12,61) p(10,18,61) p(7,18,61) p(7,12,61) </p> <p> c(27,224,63) p(-10,12,61) p(-10,18,61) p(-7,18,61) p(-7,12,61) </p> <p> c(255,255,255) lightF p(2,16,61) p(2,18,61) p(7,18,61) p(7,16,61) </p> <p> c(27,224,63) lightF p(-2,16,61) p(-2,18,61) p(-7,18,61) p(-7,16,61) </p> <p> c(27,224,63) p(7,12,61) p(7,16,61) p(-7,16,61) p(-7,12,61) </p> <p> c(27,224,63) p(10,18,61) p(10,23,61) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(2,16,61) p(2,18,61) p(-2,18,61) p(-2,16,61) </p> <p> c(27,224,63) p(-10,-23,61) p(10,-23,61) p(10,-23,-61) p(-10,-23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,23,-33) p(10,23,-33) </p> <p> c(130,130,130) gr(30) p(10,23,-33) p(-10,23,-33) p(-10,18,-33) p(10,18,-33) </p> <p> c(130,130,130) gr(30) p(10,18,-33) p(-10,18,-33) p(-10,18,-44) p(10,18,-44) </p> <p> c(130,130,130) gr(30) p(10,18,-44) p(-10,18,-44) p(-10,23,-47) p(10,23,-47) </p> // Mirror of the 3 polygons above along the Z axis: <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,18,35) p(10,18,35) </p> <p> c(130,130,130) gr(30) p(10,18,35) p(-10,18,35) p(-10,18,44) p(10,18,44) </p> <p> c(130,130,130) gr(30) p(10,18,44) p(-10,18,44) p(-10,23,47) p(10,23,47) </p> // End of mirror <p> c(130,130,130) gr(30) p(10,23,-47) p(-10,23,-47) p(-10,23,-61) p(10,23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,47) p(-10,23,47) p(-10,23,61) p(10,23,61) </p> physics(50,12,50,62,50,0,0,90,10,12,12,94,50,56,4,8330) handling(76) gwgr(40) rims(140,140,140,18,10) w(-8,20,40,11,35,20) w(8,20,40,11,-35,20) gwgr(40) rims(140,140,140,18,10) w(-8,20,-40,0,35,20) w(8,20,-40,0,-35,20) stat(120,104,129,165,162)


What is p cubed divided by p squared?

When you divide p cubed by p squared, you are essentially dividing p to the power of 3 by p to the power of 2. This simplifies to p^(3-2), which equals p^1. Therefore, the result of p cubed divided by p squared is p.


What is p cubed in an algebraic expression?

That means the same as p times p times p (that is, "p" appears 3 times as a factor).


What is p squared plus 9p plus 18 divided by p plus 6?

p2 + 9p + 18/ p + 6(p + 6)(p + 3)/ p + 6(p + 6)(p + 3)/ p + 6p + 3