The answer depends on what the factors will be. For example, every quadratic can be factored if you allow complex numbers.
If not, then it helps to use the discriminant.
If it is positive, there are two real factors or solutions.
If that positive number is a perfect square, then the factors are rational numbers.
If not, they are real but not rational (irrational).
If the discriminant is 0, there is one real solution.
Lastly, if it is negative, there are no real solutions.
you use the quadratic formula in math when the quadratic equation you are solving cannot be factored.
Set the equation equal to zero. 3x2 - x = -1 3x2 - x + 1 = 0 The equation is quadratic, but can not be factored. Use the quadratic equation.
Here are two ways to know if a given quadratic equations can be factored (can be solved by factoring). 1. Calculate the Discriminant D = b^2 - 4ac. When D is a perfect square (its square root is a whole number), then the given equation can be factored. 2. Solve the equation by using the new Diagonal Sum method (Amazon e-book 2010). This method directly finds the 2 real roots without having to factor the equation. Solving usually requires fewer than 3 trials. If this method fails to get the answer, then we can conclude that the equation can not be factored, and consequently the quadratic formula must be used.
In general, there are two steps in solving a given quadratic equation in standard form ax^2 + bx + c = 0. If a = 1, the process is much simpler. The first step is making sure that the equation can be factored? How? In general, it is hard to know in advance if a quadratic equation is factorable. I suggest that you use first the new Diagonal Sum Method to solve the equation. It is fast and convenient and can directly give the 2 roots in the form of 2 fractions. without having to factor the equation. If this method fails, then you can conclude that the equation is not factorable, and consequently, the quadratic formula must be used. See book titled:" New methods for solving quadratic equations and inequalities" (Trafford Publishing 2009) The second step is solving the equation by the quadratic formula. This book also introduces a new improved quadratic formula, that is easier to remember by relating the formula to the x-intercepts with the parabola graph of the quadratic function.
The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.
you use the quadratic formula in math when the quadratic equation you are solving cannot be factored.
It is used to solve quadratic equations that cannot be factored. Usually you would factor a quadratic equation, identify the critical values and solve, but when you cannot factor you utilize the quadratic equation.
It is a quadratic expression and when factored is: (x+1)(x+1)
Set the equation equal to zero. 3x2 - x = -1 3x2 - x + 1 = 0 The equation is quadratic, but can not be factored. Use the quadratic equation.
Well, if the given quadratic equation cannot be factored, nor completed by the square, try using the quadratic formula.
Here are two ways to know if a given quadratic equations can be factored (can be solved by factoring). 1. Calculate the Discriminant D = b^2 - 4ac. When D is a perfect square (its square root is a whole number), then the given equation can be factored. 2. Solve the equation by using the new Diagonal Sum method (Amazon e-book 2010). This method directly finds the 2 real roots without having to factor the equation. Solving usually requires fewer than 3 trials. If this method fails to get the answer, then we can conclude that the equation can not be factored, and consequently the quadratic formula must be used.
You know an equation is quadratic by looking at the degree of the highest power in the equation. If it is 2, then it is quadratic. so any equation or polynomial of the form: ax2 +bx+c=0 where a is NOT 0 and a, b and c are known as the quadratic coefficients is a quadratic equation.
If its discriminant is less than zero it can't be factored.
12
The Factor-Factor Product Relationship is a concept in algebra that relates the factors of a quadratic equation to the roots or solutions of the equation. It states that if a quadratic equation can be factored into the form (x - a)(x - b), then the roots of the equation are the values of 'a' and 'b'. This relationship is crucial in solving quadratic equations and understanding the behavior of their roots.
dun know :D
Draw the graph of the equation. the solution is/are the points where the line cuts the x(horisontal) axis .