The null hypothesis of the independent samples t-test is verbalized by either accepting or rejecting it due to the value of the t-test. If the value is less than 0.05 it is accepted and greater than 0.05 is rejecting it.
Chat with our AI personalities
The independent t-test is used to determine whether there is a statistically significant difference between the averages (means) of two groups. The null hypothesis states that there is no statistically significant difference between the two groups.
You can compare the means of two dependent or independent samples. You can also set up confidence intervals. For independent samples you test the claim that the two means are not equal; the null hypothesis is mean1 equals mean2. The alternative hypothesis is mean1 does not equal mean2. For dependent (paired) samples you test the claim that the mean of the differences are not equal; the null hypothesis is the difference equals zero; the alternative hypothesis is the difference does not equal zero.
We have two types of hypothesis i.e., Null Hypothesis and Alternative Hypothesis. we take null hypothesis as the same statement given in the problem. Alternative hypothesis is the statement that is complementary to null hypothesis. When our calculated value is less than the tabulated value, we accept null hypothesis otherwise we reject null hypothesis.
If we reject the null hypothesis, we conclude that the alternative hypothesis which is the alpha risk is true. The null hypothesis is used in statistics.
you do not need to reject a null hypothesis. If you don not that means "we retain the null hypothesis." we retain the null hypothesis when the p-value is large but you have to compare the p-values with alpha levels of .01,.1, and .05 (most common alpha levels). If p-value is above alpha levels then we fail to reject the null hypothesis. retaining the null hypothesis means that we have evidence that something is going to occur (depending on the question)
The null hypothesis will not reject - it is a hypothesis and is not capable of rejecting anything. The critical region consists of the values of the test statistic where YOU will reject the null hypothesis in favour of the expressed alternative hypothesis.