We have two types of hypothesis i.e., Null Hypothesis and Alternative Hypothesis. we take null hypothesis as the same statement given in the problem. Alternative hypothesis is the statement that is complementary to null hypothesis.
When our calculated value is less than the tabulated value, we accept null hypothesis otherwise we reject null hypothesis.
Chat with our AI personalities
In statistics, a null hypothesis is the hypothesis which you wish to test against some alternative. Often, it is framed in a way that is the opposite of what you wish to prove. You then collect the data and, if the resulting test statistic is such that observations which are at least as extreme as the one realised is very unlikely under the null hypothesis, then it is rejected and the alternative accepted.
The null hypothesis cannot be accepted. Statistical tests only check whether differences in means are probably due to chance differences in sampling (the reason variance is so important). So if the p-value obtained by the data is larger than the significance level against which you are testing, we only fail to reject the null. If the p-value is lower than the significance level, the null hypothesis is rejected in favor of the alternative hypothesis.
W The test statistic is is the critical region or it exceeds the critical level. What this means is that there is a very low probability (less than the critical level) that the test statistics could have attained a value as extreme (or more extreme) if the null hypothesis were true. In simpler terms, if the null hypothesis were true you are very, very unlikely to get such an extreme value for the test statistic. And although it is possible that this happened purely by chance, it is more likely that the null hypothesis was wrong and so you reject it.
If we reject the null hypothesis, we conclude that the alternative hypothesis which is the alpha risk is true. The null hypothesis is used in statistics.
The null hypothesis will not reject - it is a hypothesis and is not capable of rejecting anything. The critical region consists of the values of the test statistic where YOU will reject the null hypothesis in favour of the expressed alternative hypothesis.