Study guides

☆☆

Q: How many different recursive patterns can you find with 4 and 7 as the first 2 terms?

Write your answer...

Submit

Still have questions?

Related questions

No, patterns with terms that are not based upon previous terms are not recursive. Example: i * i where i is the nth term of the pattern.

Infinitely many. For example: Un+1 = Un + 3 or Un+1 = 2*Un - 1 or Un+1 = 3*Un - 5 or, more generally, Un+1 = k*Un + 7 - 4*k where k is any number. Each one of them will be different from the third term onwards. These are linear patterns. There are quadratic and other recursive relationships.

It is a term for sequences in which a finite number of terms are defined explicitly and then all subsequent terms are defined by the preceding terms. The best known example is probably the Fibonacci sequence in which the first two terms are defined explicitly and after that the definition is recursive: x1 = 1 x2 = 1 xn = xn-1 + xn-2 for n = 3, 4, ...

Each term, except the first two, in the Fibonacci sequence is defined in terms of terms that went earlier in the sequence. That is the meaning of "recursive". t(1) = 1 t(2) = 1 t(n+2) = t(n) + t(n+1) for n = 1, 2, 3, ...

An explicit rule defines the terms of a sequence in terms of some independent parameter. A recursive rule defines them in relation to values of the variable at some earlier stage(s) in the sequence.

A base case is the part of a recursive definition or algorithm which is not defined in terms of itself.

A: Un+1 = Un + d is recursive with common difference d.B: Un+1 = Un * r is recursive with common ratio r.C: The definition seems incomplete.A: Un+1 = Un + d is recursive with common difference d.B: Un+1 = Un * r is recursive with common ratio r.C: The definition seems incomplete.A: Un+1 = Un + d is recursive with common difference d.B: Un+1 = Un * r is recursive with common ratio r.C: The definition seems incomplete.A: Un+1 = Un + d is recursive with common difference d.B: Un+1 = Un * r is recursive with common ratio r.C: The definition seems incomplete.

a pattern is a pattern guys come on u shoul know that is really very esay i want tell you the answerthink by your self

recursive definition of a function is defined in which the function is defined in terms of itself.here the fuction calls itself repetitively.

ASTROLABE

A recursive call in an algorithm is when a function (that implements this algorithm) calls itself. For example, Quicksort is a popular algorithm that is recursive. The recursive call is seen in the last line of the pseudocode, where the quicksort function calls itself. function quicksort('array') create empty lists 'less' and 'greater' if length('array') ≤ 1 return 'array' // an array of zero or one elements is already sorted select and remove a pivot value 'pivot' from 'array' for each 'x' in 'array' if 'x' ≤ 'pivot' then append 'x' to 'less' else append 'x' to 'greater' return concatenate(quicksort('less'), 'pivot', quicksort('greater'))

By definition, recursion means the repeated application of a recursive definition or procedure. It is used to define an object in terms of itself in computer science and mathematical logic.

People also asked