true
If a point is on the perpendicular bisector of a segment, then it is equidistant, or the same distance, from the endpoints of the segment.
A perpendicular bisector is a line that divides a given line segment into halves, and is perpendicular to the line segment. An angle bisector is a line that bisects a given angle.
a line or segment that is perpendicular to the given segment and divides it into two congruent segments
A right bisector of a line segment, is better know as a perpendicular bisector. It is a line that divides the original line in half and is perpendicular to it (makes a right angle).
Yes. If you have an isosceles triangle standing up on the unequal side, thenthe line segment from the top vertex perpendicular to the base is all of these.
on the perpendicular bisector of the segment.
on the perpendicular bisector of the segment.
Equidistant from the endpoints of the segment.
If a point is on the perpendicular bisector of a segment, then it is equidistant, or the same distance, from the endpoints of the segment.
then it is equidistant from the endpoints of the segment- apex
All of the points on a perpendicular bisector are equidistant from the endpoints of the segment.
The perpendicular bisector theorem states that if a point is on the perpendicular bisector of a line segment, then it is equidistant from the endpoints of that segment. Conversely, if a point is equidistant from the endpoints of a segment, it lies on the perpendicular bisector of that segment. This theorem is a fundamental concept in geometry, often used in constructions and proofs.
Biconditional Statement for: Perpendicular Bisector Theorem: A point is equidistant if and only if the point is on the perpendicular bisector of a segment. Converse of the Perpendicular Bisector Theorem: A point is on the perpendicular bisector of the segment if and only if the point is equidistant from the endpoints of a segment.
The converse of perpendicular bisector theorem states that if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
Converse of the Perpendicular Bisector Theorem - if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.Example: If DA = DB, then point D lies on the perpendicular bisector of line segment AB.you :))
true
A perpendicular bisector is a line that divides a segment into two equal parts at a 90-degree angle. It has two key characteristics: it is equidistant from the endpoints of the segment it bisects, meaning any point on the bisector is the same distance from both endpoints, and it intersects the segment at its midpoint. Additionally, the slope of the perpendicular bisector is the negative reciprocal of the slope of the original segment.