3y2-5xyz
yay i figured it out!!!!
A parabola is a graph of a 2nd degree polynomial function. Two graph a parabola, you must factor the polynomial equation and solve for the roots and the vertex. If factoring doesn't work, use the quadratic equation.
A second-degree polynomial function is a function of the form: P(x) = ax2 + bx + cWhere a ≠ 0.
Oh, dude, it's like this: all quadratic equations are polynomials, but not all polynomials are quadratic equations. A quadratic equation is a specific type of polynomial that has a degree of 2, meaning it has a highest power of x^2. So, like, all squares are rectangles, but not all rectangles are squares, you know what I mean?
True Yes. Although the term 'quad' stands for four, a quadratic equation is a polynomial of second degree.
In mathematics, a rational function is any function which can be written as the ratio of two polynomial functions. Neither the coefficients of the polynomials nor the values taken by the function are necessarily rational numbers.In the case of one variable, , a function is called a rational function if and only if it can be written in the formwhere and are polynomial functions in and is not the zero polynomial. The domain of is the set of all points for which the denominator is not zero, where one assumes that the fraction is written in its lower degree terms, that is, and have several factors of the positive degree.Every polynomial function is a rational function with . A function that cannot be written in this form (for example, ) is not a rational function (but the adjective "irrational" is not generally used for functions, but only for numbers).An expression of the form is called a rational expression. The need not be a variable. In abstract algebra the is called an indeterminate.A rational equation is an equation in which two rational expressions are set equal to each other. These expressions obey the same rules as fractions. The equations can be solved by cross-multiplying. Division by zero is undefined, so that a solution causing formal division by zero is rejected.
A polynomial of degree 2.
An irreducible equation is an irreducible polynomial which is equal to zero. A polynomial is irreducible over a particular type of number if it cannot be factorised into the products of two or more lower degree polynomials with coefficients of that type of number. For example, the equation x2 + 1 =0 is irreducible over the real numbers; there are no lower order polynomials, containing only real coefficients, which could be multiplied together to give this equation.
The highest power in the equation.
A parabola is a graph of a 2nd degree polynomial function. Two graph a parabola, you must factor the polynomial equation and solve for the roots and the vertex. If factoring doesn't work, use the quadratic equation.
An irreducible equation is an irreducible polynomial which is equal to zero. A polynomial is irreducible over a particular type of number if it cannot be factorised into the products of two or more lower degree polynomials with coefficients of that type of number. For example, the equation x2 + 1 =0 is irreducible over the real numbers; there are no lower order polynomials, containing only real coefficients, which could be multiplied together to give this equation.
Sort of... but not entirely. Assuming the polynomial's coefficients are real, the polynomial either has as many real roots as its degree, or an even number less. Thus, a polynomial of degree 4 can have 4, 2, or 0 real roots; while a polynomial of degree 5 has either 5, 3, or 1 real roots. So, polynomial of odd degree (with real coefficients) will always have at least one real root. For a polynomial of even degree, this is not guaranteed. (In case you are interested about the reason for the rule stated above: this is related to the fact that any complex roots in such a polynomial occur in conjugate pairs; for example: if 5 + 2i is a root, then 5 - 2i is also a root.)
A Quadratic
A second-degree polynomial function is a function of the form: P(x) = ax2 + bx + cWhere a ≠ 0.
No. A polynomial can have as many degrees as you like.
You know an equation is quadratic by looking at the degree of the highest power in the equation. If it is 2, then it is quadratic. so any equation or polynomial of the form: ax2 +bx+c=0 where a is NOT 0 and a, b and c are known as the quadratic coefficients is a quadratic equation.
quadratic
For a polynomial of the form y = p(x) (i.e., some polynomial function of x), having a y-intercept simply means that the polynomial is defined for x = 0 - and a polynomial is defined for any value of "x". As for the x-intercept: from left to right, a polynomial of even degree may come down, not quite reach zero, and then go back up again. A simple example is y = x2 + 1. Why is the situation for "x" and for "y" different? Well, the original equation is a polynomial in "x"; but if you solve for "x", you don't get a polynomial in "y".