answersLogoWhite

0

Ratio

User Avatar

Aishah Flores

Lvl 2
4y ago

What else can I help you with?

Related Questions

What is the term for A sequence of numbers in which the ratio between two consecutive numbers is a constant?

A geometric series.


What consecutive terms is constant in a geometric sequence?

In a geometric sequence, the ratio between consecutive terms is constant. This means that each term can be obtained by multiplying the previous term by a fixed, non-zero number called the common ratio. For example, in the sequence 2, 6, 18, the ratio is consistently 3, as each term is three times the preceding one. Thus, the defining characteristic of a geometric sequence is this consistent multiplicative relationship between consecutive terms.


Is the sequence 2 3 5 8 12 arithmetic or geometric?

Well, honey, neither. That sequence is a hot mess. In an arithmetic sequence, you add the same number each time, and in a geometric sequence, you multiply by the same number each time. This sequence is just doing its own thing, so it's neither arithmetic nor geometric.


Is 0.21525 geometric or arithmetic?

The term "0.21525" itself does not indicate whether it is geometric or arithmetic, as it is simply a numerical value. To determine if a sequence or series is geometric or arithmetic, we need to examine the relationship between its terms. An arithmetic sequence has a constant difference between consecutive terms, while a geometric sequence has a constant ratio. If you provide a series of terms, I can help identify its nature.


Are the numbers 24711 arithmetic or geometric and what are the next two terms in the sequence?

The numbers 2, 4, 7, 11 are neither strictly arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. Here, the differences between terms are 2, 3, and 4, suggesting a pattern of increasing increments. Following this pattern, the next two terms would be 16 (11 + 5) and 22 (16 + 6).


Descending geometric sequence?

A descending geometric sequence is a sequence in which the ratio between successive terms is a positive constant which is less than 1.


How can a sequence be both arithmetic and geometric?

A sequence can be both arithmetic and geometric if it consists of constant values. For example, the sequence where every term is the same number (e.g., 2, 2, 2, 2) is arithmetic because the difference between consecutive terms is zero, and it is geometric because the ratio of consecutive terms is also one. In such cases, the sequence meets the criteria for both types, as both the common difference and the common ratio are consistent.


What are a geometric sequence?

A geometric sequence is an ordered set of numbers such that (after the first number) the ratio between any number and its predecessor is a constant.


Is The Fibonacci sequence arithmetic?

No, the Fibonacci sequence is not an arithmetic because the difference between consecutive terms is not constant


What is a sequence of numbers in which the difference between any two consecutive numbers is a constant called?

Arithmetic Sequence


What recursive formulas represent the same geometric sequence as the formula?

To represent a geometric sequence recursively, you can use the formula ( a_n = r \cdot a_{n-1} ), where ( r ) is the common ratio and ( a_1 ) is the first term of the sequence. The first term can be defined explicitly, such as ( a_1 = A ), where ( A ) is a constant. This recursive definition effectively captures the relationship between consecutive terms in the sequence.


How can you tell if a number sequence is geometric?

The ratio between successive numbers must be a constant.