Decimal: 3 2 5 Binary: 0011 0010 0101 so 325 = 0011 0010 0101
87
A 0, 1 system using: 5, 2, 1', 1 instead of 8, 4, 2, 1 to count binary numbers. Example: 0000 0001 0010 0101 0100 0101 1001 1100 1101 1111
convert 13 to binary its 01101 and then convert 25 to binary its 11001 and perform logical 'and' operation i.e. 01101 & 11001 ------------------- 01001 i.e. 9 so the correct answer is 9.
It is greater!It is greater!It is greater!It is greater!
0001011 111000 1010010001111 10001010101 000110 1001101010 001010101010 1001 001 01 010010010101 0011010001010010 100100010101 1110000 1101010 01001 100 0001 10001 110001 0101
What is the product of the binary numbers 0101 and 0101?
0101 hours
11001
11001
It is 13 5 5.
Agwam, Massachusetts
01001
1110 0101 1101 1011 is E5DB
0101
1:01 am
0.1012 = 0.010201